The following article excerpt is from the NASA website:
NEEMO 15 Commander Shannon Walker (NASA) and fellow aquanaut David Saint-Jacques (Canadian Space Agency) use a small telescoping boom as a means of translating across a simulated asteroid surface. Each end of the small boom can be anchored to the surface by either magnets or tethers and the astronauts can traverse the surface by alternating anchor points. Various translation techniques are being tested during this 13-day NEEMO mission.
NEEMO, which stands for NASA Extreme Environment Mission Operations, is one facet of NASA's Analog and Field Testing Missions. As NASA plans to expand human spaceflight and robotic exploration beyond low Earth orbit, astronauts are being trained to meet these challenges. Future destinations may include the moon, near Earth asteroids and Mars and its moons.
To prepare for the challenge of exploring these destinations in space, NASA conducts missions here on Earth, in remote locations that have physical similarities to extreme space environments.
Tuesday, October 25, 2011
Friday, October 21, 2011
DISK OF WATER FOUND SURROUNDING FORMING STAR
The following excerpt is from the NASA website:
“WASHINGTON -- Using data from the Herschel Space Observatory, astronomers have detected for the first time cold water vapor enveloping a dusty disk around a young star. The findings suggest that this disk, which is poised to develop into a solar system, contains great quantities of water, suggesting that water-covered planets like Earth may be common in the universe. Herschel is a European Space Agency mission with important NASA contributions.
Scientists previously found warm water vapor in planet-forming disks close to a central star. Evidence for vast quantities of water extending out into the cooler, far reaches of disks where comets take shape had not been seen until now. The more water available in disks for icy comets to form, the greater the chances that large amounts eventually will reach new planets through impacts.
"Our observations of this cold vapor indicate enough water exists in the disk to fill thousands of Earth oceans," said astronomer Michiel Hogerheijde of Leiden Observatory in The Netherlands. Hogerheijde is the lead author of a paper describing these findings in the Oct. 21 issue of the journal Science.
The star with this water-logged disk, called TW Hydrae, is 10 million years old and located about 175 light-years away from Earth, in the constellation Hydra. The frigid watery haze detected by Hogerheijde and his team is thought to originate from ice-coated grains of dust near the disk's surface. Ultraviolet light from the star causes some water molecules to break free of this ice, creating a thin layer of gas with a light signature detected by Herschel's Heterodyne Instrument for the Far-Infrared, or HIFI.
"These are the most sensitive HIFI observations to-date," said Paul Goldsmith, NASA project scientist for the Herschel Space Observatory at the agency's Jet Propulsion Laboratory in Pasadena, Calif. "It is a testament to the instrument-builders that such weak signals can be detected."
TW Hydrae is an orange dwarf star, somewhat smaller and cooler than our yellow-white sun. The giant disk of material that encircles the star has a size nearly 200 times the distance between Earth and the sun. Over the next few million years, astronomers believe matter within the disk will collide and grow into planets, asteroids and other cosmic bodies. Dust and ice particles will assemble as comets.
As the new solar system evolves, icy comets are likely to deposit much of the water they contain on freshly created worlds through impacts, giving rise to oceans. Astronomers believe TW Hydrae and its icy disk may be representative of many other young star systems, providing new insights on how planets with abundant water could form throughout the universe.
Herschel is a European Space Agency cornerstone mission launched in 2009, carrying science instruments provided by consortia of European institutes. NASA's Herschel Project Office based at JPL contributed mission-enabling technology for two of Herschel's three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the U.S. astronomical community. Caltech manages JPL for NASA.”
“WASHINGTON -- Using data from the Herschel Space Observatory, astronomers have detected for the first time cold water vapor enveloping a dusty disk around a young star. The findings suggest that this disk, which is poised to develop into a solar system, contains great quantities of water, suggesting that water-covered planets like Earth may be common in the universe. Herschel is a European Space Agency mission with important NASA contributions.
Scientists previously found warm water vapor in planet-forming disks close to a central star. Evidence for vast quantities of water extending out into the cooler, far reaches of disks where comets take shape had not been seen until now. The more water available in disks for icy comets to form, the greater the chances that large amounts eventually will reach new planets through impacts.
"Our observations of this cold vapor indicate enough water exists in the disk to fill thousands of Earth oceans," said astronomer Michiel Hogerheijde of Leiden Observatory in The Netherlands. Hogerheijde is the lead author of a paper describing these findings in the Oct. 21 issue of the journal Science.
The star with this water-logged disk, called TW Hydrae, is 10 million years old and located about 175 light-years away from Earth, in the constellation Hydra. The frigid watery haze detected by Hogerheijde and his team is thought to originate from ice-coated grains of dust near the disk's surface. Ultraviolet light from the star causes some water molecules to break free of this ice, creating a thin layer of gas with a light signature detected by Herschel's Heterodyne Instrument for the Far-Infrared, or HIFI.
"These are the most sensitive HIFI observations to-date," said Paul Goldsmith, NASA project scientist for the Herschel Space Observatory at the agency's Jet Propulsion Laboratory in Pasadena, Calif. "It is a testament to the instrument-builders that such weak signals can be detected."
TW Hydrae is an orange dwarf star, somewhat smaller and cooler than our yellow-white sun. The giant disk of material that encircles the star has a size nearly 200 times the distance between Earth and the sun. Over the next few million years, astronomers believe matter within the disk will collide and grow into planets, asteroids and other cosmic bodies. Dust and ice particles will assemble as comets.
As the new solar system evolves, icy comets are likely to deposit much of the water they contain on freshly created worlds through impacts, giving rise to oceans. Astronomers believe TW Hydrae and its icy disk may be representative of many other young star systems, providing new insights on how planets with abundant water could form throughout the universe.
Herschel is a European Space Agency cornerstone mission launched in 2009, carrying science instruments provided by consortia of European institutes. NASA's Herschel Project Office based at JPL contributed mission-enabling technology for two of Herschel's three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the U.S. astronomical community. Caltech manages JPL for NASA.”
Subscribe to:
Posts (Atom)