Monday, March 31, 2014
Sunday, March 30, 2014
ADRIFT IN ORION'S STELLAR NURSERY..."
FROM: NASA
This esthetic close-up of cosmic clouds and stellar winds features LL Orionis, interacting with the Orion Nebula flow. Adrift in Orion's stellar nursery and still in its formative years, variable star LL Orionis produces a wind more energetic than the wind from our own middle-aged Sun. As the fast stellar wind runs into slow moving gas a shock front is formed, analogous to the bow wave of a boat moving through water or a plane traveling at supersonic speed. The small, arcing, graceful structure just above and left of center is LL Ori's cosmic bow shock, measuring about half a light-year across. The slower gas is flowing away from the Orion Nebula's hot central star cluster, the Trapezium, located off the upper left corner of the picture. In three dimensions, LL Ori's wrap-around shock front is shaped like a bowl that appears brightest when viewed along the "bottom" edge. The beautiful picture is part of a large mosaic view of the complex stellar nursery in Orion, filled with a myriad of fluid shapes associated with star formation. Image Credit: NASA, ESA and the Hubble Heritage Team.
This esthetic close-up of cosmic clouds and stellar winds features LL Orionis, interacting with the Orion Nebula flow. Adrift in Orion's stellar nursery and still in its formative years, variable star LL Orionis produces a wind more energetic than the wind from our own middle-aged Sun. As the fast stellar wind runs into slow moving gas a shock front is formed, analogous to the bow wave of a boat moving through water or a plane traveling at supersonic speed. The small, arcing, graceful structure just above and left of center is LL Ori's cosmic bow shock, measuring about half a light-year across. The slower gas is flowing away from the Orion Nebula's hot central star cluster, the Trapezium, located off the upper left corner of the picture. In three dimensions, LL Ori's wrap-around shock front is shaped like a bowl that appears brightest when viewed along the "bottom" edge. The beautiful picture is part of a large mosaic view of the complex stellar nursery in Orion, filled with a myriad of fluid shapes associated with star formation. Image Credit: NASA, ESA and the Hubble Heritage Team.
Friday, March 28, 2014
Thursday, March 27, 2014
Monday, March 24, 2014
U.S. EXTENDS BEST WISHES TO PEOPLE OF GREECE ON THEIR 193RD INDEPENDENCE ANNIVERSARY
FROM: U.S. STATE DEPARTMENT
On the Occasion of Greek National Day
John Kerry
Secretary of State
Secretary of State
Washington, DC
March 21, 2014
On behalf of President Obama and the people of the United States, I extend best wishes to the people of Greece on the 193rd anniversary of your independence on March 25.
My home of Massachusetts is host to one of the largest Greek-American communities in the United States. During my time in statewide political office, I served beside a proud Greek-American, former Governor Michael S. Dukakis. When I joined the United States Senate, I succeeded another equally proud Greek-American, Paul Tsongas.
My experience has been enriched through my visits to Greece, and I was happy to welcome Foreign Minister Venizelos to the State Department last year.
From the ancient Greek thinkers, whose ideas and principles inspired America’s Founding Fathers, to the modern Hellenic Republic, the bonds between us are strong and continue to grow.
The United States stands in solidarity with Greece as a NATO ally, and we look forward to deepening our security partnership in the years to come.
Beyond our strong bilateral relationship, our people share important values and cultural ties. We will continue to encourage the commercial, educational, and exchange opportunities that serve as the foundation of our friendship.
We applaud Greece’s leadership of the EU Council Presidency, and we are committed to working together to ensure a more secure and prosperous future for Greeks and Americans alike.
My home of Massachusetts is host to one of the largest Greek-American communities in the United States. During my time in statewide political office, I served beside a proud Greek-American, former Governor Michael S. Dukakis. When I joined the United States Senate, I succeeded another equally proud Greek-American, Paul Tsongas.
My experience has been enriched through my visits to Greece, and I was happy to welcome Foreign Minister Venizelos to the State Department last year.
From the ancient Greek thinkers, whose ideas and principles inspired America’s Founding Fathers, to the modern Hellenic Republic, the bonds between us are strong and continue to grow.
The United States stands in solidarity with Greece as a NATO ally, and we look forward to deepening our security partnership in the years to come.
Beyond our strong bilateral relationship, our people share important values and cultural ties. We will continue to encourage the commercial, educational, and exchange opportunities that serve as the foundation of our friendship.
We applaud Greece’s leadership of the EU Council Presidency, and we are committed to working together to ensure a more secure and prosperous future for Greeks and Americans alike.
Sunday, March 23, 2014
THE COLORFUL PLANET EARTH
FROM: NASA
On Aug. 3, 2004, NASA’s Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft began a seven-year journey, spiraling through the inner solar system to Mercury.
One year after launch, the spacecraft zipped around Earth, getting an orbit correction from Earth’s gravity and getting a chance to test its instruments by observing its home planet. This image is a view of South America and portions of North America and Africa from the Mercury Dual Imaging System’s wide-angle camera aboard MESSENGER. The wide-angle camera records light at eleven different wavelengths, including visible and infrared light. Combining blue, red, and green light results in a true-color image from the observations. The image substitutes infrared light for blue light in the three-band combination. The resulting image is crisper than the natural color version because our atmosphere scatters blue light. Infrared light, however, passes through the atmosphere with relatively little scattering and allows a clearer view. That wavelength substitution makes plants appear red. Why? Plants reflect near-infrared light more strongly than either red or green, and in this band combination, near-infrared is assigned to look red. Apart from getting a clearer image, the substitution reveals more information than natural color. Healthy plants reflect more near-infrared light than stressed plants, so bright red indicates dense, growing foliage. For this reason, biologists and ecologists occasionally use infrared cameras to photograph forests.
Why is that Forest Red and that Cloud Blue? How to Interpret a False-Color Satellite Image Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington Caption: Holli Riebeek.
On Aug. 3, 2004, NASA’s Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft began a seven-year journey, spiraling through the inner solar system to Mercury.
One year after launch, the spacecraft zipped around Earth, getting an orbit correction from Earth’s gravity and getting a chance to test its instruments by observing its home planet. This image is a view of South America and portions of North America and Africa from the Mercury Dual Imaging System’s wide-angle camera aboard MESSENGER. The wide-angle camera records light at eleven different wavelengths, including visible and infrared light. Combining blue, red, and green light results in a true-color image from the observations. The image substitutes infrared light for blue light in the three-band combination. The resulting image is crisper than the natural color version because our atmosphere scatters blue light. Infrared light, however, passes through the atmosphere with relatively little scattering and allows a clearer view. That wavelength substitution makes plants appear red. Why? Plants reflect near-infrared light more strongly than either red or green, and in this band combination, near-infrared is assigned to look red. Apart from getting a clearer image, the substitution reveals more information than natural color. Healthy plants reflect more near-infrared light than stressed plants, so bright red indicates dense, growing foliage. For this reason, biologists and ecologists occasionally use infrared cameras to photograph forests.
Why is that Forest Red and that Cloud Blue? How to Interpret a False-Color Satellite Image Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington Caption: Holli Riebeek.
Friday, March 21, 2014
Thursday, March 20, 2014
Wednesday, March 19, 2014
Monday, March 17, 2014
Sunday, March 16, 2014
ICE RETREATS AT THE MARTIAN DUNES DURING MARTIAN SPRING
FROM: NASA
Mars’ northern-most sand dunes are beginning to emerge from their winter cover of seasonal carbon dioxide (dry) ice. Dark, bare south-facing slopes are soaking up the warmth of the sun. The steep lee sides of the dunes are also ice-free along the crest, allowing sand to slide down the dune. Dark splotches are places where ice cracked earlier in spring, releasing sand. Soon the dunes will be completely bare and all signs of spring activity will be gone.
This image was acquired by the HiRISE camera aboard NASA's Mars Reconnaissance Orbiter on Jan. 16, 2014. The University of Arizona, Tucson, operates the HiRISE camera, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter Project for the NASA Science Mission Directorate, Washington. > More information and image products Image Credit: NASA/JPL-Caltech/Univ. of Arizona Caption: Candy Hansen.
Mars’ northern-most sand dunes are beginning to emerge from their winter cover of seasonal carbon dioxide (dry) ice. Dark, bare south-facing slopes are soaking up the warmth of the sun. The steep lee sides of the dunes are also ice-free along the crest, allowing sand to slide down the dune. Dark splotches are places where ice cracked earlier in spring, releasing sand. Soon the dunes will be completely bare and all signs of spring activity will be gone.
This image was acquired by the HiRISE camera aboard NASA's Mars Reconnaissance Orbiter on Jan. 16, 2014. The University of Arizona, Tucson, operates the HiRISE camera, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter Project for the NASA Science Mission Directorate, Washington. > More information and image products Image Credit: NASA/JPL-Caltech/Univ. of Arizona Caption: Candy Hansen.
Friday, March 14, 2014
Thursday, March 13, 2014
Tuesday, March 11, 2014
Monday, March 10, 2014
Sunday, March 9, 2014
SUN EMITS "SIGNIFICANT SOLAR FLARE"
FROM: NASA
On Feb. 24, 2014, the sun emitted a significant solar flare, peaking at 7:49 p.m. EST. NASA's Solar Dynamics Observatory (SDO), which keeps a constant watch on the sun, captured images of the event. These SDO images from 7:25 p.m. EST on Feb. 24 show the first moments of this X-class flare in different wavelengths of light -- seen as the bright spot that appears on the left limb of the sun. Hot solar material can be seen hovering above the active region in the sun's atmosphere, the corona. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. > Read more Image Credit: NASA/SDO.
On Feb. 24, 2014, the sun emitted a significant solar flare, peaking at 7:49 p.m. EST. NASA's Solar Dynamics Observatory (SDO), which keeps a constant watch on the sun, captured images of the event. These SDO images from 7:25 p.m. EST on Feb. 24 show the first moments of this X-class flare in different wavelengths of light -- seen as the bright spot that appears on the left limb of the sun. Hot solar material can be seen hovering above the active region in the sun's atmosphere, the corona. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. > Read more Image Credit: NASA/SDO.
Saturday, March 8, 2014
Friday, March 7, 2014
Thursday, March 6, 2014
Wednesday, March 5, 2014
Tuesday, March 4, 2014
Monday, March 3, 2014
Sunday, March 2, 2014
LAUNCH OF THE H-IIA WITH GPM CORE OBSERVATORY
FROM: NASA
H-IIA ROCKET ROLLS OUT AT TANEGASHIMA SPACE CENTER, JAPAN
A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory rolls out to launch pad 1 at the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. The rocket is scheduled to lift off during a launch window that opens at 1:37 p.m. EST on Thursday, Feb. 27 (3:37 a.m., Friday, Feb. 28 Japan time). GPM is an international satellite mission to provide next-generation observations of rain and snow worldwide every three hours. The GPM Core Observatory satellite carries advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Image Credit-NASA-Bill Ingalls.
JAPANESE H-IIA ROCKET LAUNCHES FROM TANEGASHIMA SPACE CENTER
A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from the Tanegashima Space Center on Friday, Feb. 28, 2014 (Japan Time), in Tanegashima, Japan. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Image Credit-NASA-Bill Ingalls.
H-IIA ROCKET ROLLS OUT AT TANEGASHIMA SPACE CENTER, JAPAN
A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory rolls out to launch pad 1 at the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. The rocket is scheduled to lift off during a launch window that opens at 1:37 p.m. EST on Thursday, Feb. 27 (3:37 a.m., Friday, Feb. 28 Japan time). GPM is an international satellite mission to provide next-generation observations of rain and snow worldwide every three hours. The GPM Core Observatory satellite carries advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Image Credit-NASA-Bill Ingalls.
JAPANESE H-IIA ROCKET LAUNCHES FROM TANEGASHIMA SPACE CENTER
A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from the Tanegashima Space Center on Friday, Feb. 28, 2014 (Japan Time), in Tanegashima, Japan. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Image Credit-NASA-Bill Ingalls.
Subscribe to:
Posts (Atom)