The International Space Station. Credit: NASA

Sunday, October 7, 2012

U.S. Department of Defense Armed with Science Update: "MIRROR, MIRROR"

U.S. Department of Defense Armed with Science Update

MARS AND IT'S WATER STONES

FROM: NASA
Link to a Watery Past

In this image from NASA's Curiosity rover, a rock outcrop called Link pops out from a Martian surface that is elsewhere blanketed by reddish-brown dust. The fractured Link outcrop has blocks of exposed, clean surfaces. Rounded gravel fragments, or clasts, up to a couple inches (few centimeters) in size are in a matrix of white material. Many gravel-sized rocks have eroded out of the outcrop onto the surface, particularly in the left portion of the frame. The outcrop characteristics are consistent with a sedimentary conglomerate, or a rock that was formed by the deposition of water and is composed of many smaller rounded rocks cemented together. Water transport is the only process capable of producing the rounded shape of clasts of this size.

The Link outcrop was imaged with the 100-millimeter Mast Camera on Sept. 2, 2012, which was the 27th sol, or Martian day of operations.

The name Link is derived from a significant rock formation in the Northwest Territories of Canada, where there is also a lake with the same name.

Scientists enhanced the color in this version to show the Martian scene as it would appear under the lighting conditions we have on Earth, which helps in analyzing the terrain.

Image credit: NASA/JPL-Caltech/MSSS

Sunday, September 30, 2012

VIEW OF A QUASAR


 
Quasar Drenched in Water Vapor
FROM: NASA/JPL

This artist's concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar's torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view.