Tuesday, June 11, 2013
NASA VIDEO: THE WATER ON THE MOON
FROM: NASA
Water on the Moon
Since the 1960s, scientists have suspected that frozen water could survive in cold, dark craters at the moon's poles. While previous lunar missions have detected hints of water on the moon, new data from the Lunar Reconnaissance Orbiter pinpoints areas near the south pole where water is likely to exist. Credit: NASA's Goddard Space Flight Center
Monday, June 10, 2013
THE SUN OVER EARTH'S HORIZON
FROM: NASA
The sun is captured in a "starburst" mode over Earth's horizon by one of the Expedition 36 crew members aboard the International Space Station, as the orbital outpost was above a point in southwestern Minnesota on May 21, 2013. Image Credit: NASA
Sunday, June 9, 2013
CHANGING FATE: REDIRECTING AN ASTEROID
FROM: NASA
This artist's rendering shows what capturing an asteroid could look like. NASA's FY2014 budget proposal includes a plan to robotically capture a small near-Earth asteroid and redirect it safely to a stable orbit in the Earth-moon system where astronauts can visit and explore it. Performing these elements for the proposed asteroid initiative integrates the best of NASA's science, technology and human exploration capabilities and draws on the innovation of America's brightest scientists and engineers. It uses current and developing capabilities to find both large asteroids that pose a hazard to Earth and small asteroids that could be candidates for the initiative, accelerates our technology development activities in high-powered solar electric propulsion and takes advantage of our hard work on the Space Launch System rocket and Orion spacecraft, helping to keep NASA on target to reach the President's goal of sending humans to Mars in the 2030s. Image Credit: NASA/Advanced Concepts Lab
Saturday, June 8, 2013
LANDSAT 8 SATELLITE CONTROL TRANSFERED TO U.S. GEOLOGICAL SURVEY
FROM: NASA
Landsat 8 Satellite Begins Watch
WASHINGTON -- NASA transferred operational control of the Landsat 8 satellite to the U.S. Geological Survey (USGS) in a ceremony in Sioux Falls, S.D.
The event marks the beginning of the satellite's mission to extend an unparalleled four-decade record of monitoring Earth's landscape from space. Landsat 8 is the latest in the Landsat series of remote-sensing satellites, which have been providing global coverage of landscape changes on Earth since 1972. The Landsat program is a joint effort between NASA and USGS.
NASA launched the satellite Feb. 11 as the Landsat Data Continuity Mission (LDCM). Since then, NASA mission engineers and scientists, with USGS collaboration, have been putting the satellite through its paces -- steering it into its orbit, calibrating the detectors, and collecting test images. Now fully mission-certified, the satellite is under USGS operational control.
"Landsat is a centerpiece of NASA's Earth Science program," said NASA Administrator Charles Bolden in Washington. "Landsat 8 carries on a long tradition of Landsat satellites that for more than 40 years have helped us learn how Earth works, to understand how humans are affecting it and to make wiser decisions as stewards of this planet."
Beginning Thursday, USGS specialists will collect at least 400 Landsat 8 scenes every day from around the world to be processed and archived at the USGS Earth Resources Observation and Science Center in Sioux Falls. The newest satellite joins Landsat 7, which launched in 1999 and continues to collect images. Since 2008, USGS has provided more than 11 million current and historical Landsat images free of charge to users over the Internet.
"We are very pleased to work with NASA for the good of science and the American people," said U.S. Interior Secretary Sally Jewell in Washington. "The Landsat program allows us all to have a common, easily accessible view of our planet. This is the starting point for a shared understanding of the environmental challenges we face."
Remote-sensing satellites such as the Landsat series help scientists observe the world beyond the power of human sight, monitor changes to the land that may have natural or human causes, and detect critical trends in the conditions of natural resources.
The 41-year Landsat record provides global coverage at a scale that impartially documents natural processes such as volcanic eruptions, glacial retreat and forest fires and shows large-scale human activities such as expanding cities, crop irrigation and forest clear-cuts. The Landsat Program is a sustained effort by the United States to provide direct societal benefits across a wide range of human endeavors including human and environmental health, energy and water management, urban planning, disaster recovery, and agriculture.
With Landsat 8 circling Earth 14 times a day, and in combination with Landsat 7, researchers will be able to use an improved frequency of data from both satellites. The two observation instruments aboard Landsat 8 feature improvements over their earlier counterparts while collecting information that is compatible with 41 years of land images from previous Landsat satellites.
Landsat 8 Satellite Begins Watch
WASHINGTON -- NASA transferred operational control of the Landsat 8 satellite to the U.S. Geological Survey (USGS) in a ceremony in Sioux Falls, S.D.
The event marks the beginning of the satellite's mission to extend an unparalleled four-decade record of monitoring Earth's landscape from space. Landsat 8 is the latest in the Landsat series of remote-sensing satellites, which have been providing global coverage of landscape changes on Earth since 1972. The Landsat program is a joint effort between NASA and USGS.
NASA launched the satellite Feb. 11 as the Landsat Data Continuity Mission (LDCM). Since then, NASA mission engineers and scientists, with USGS collaboration, have been putting the satellite through its paces -- steering it into its orbit, calibrating the detectors, and collecting test images. Now fully mission-certified, the satellite is under USGS operational control.
"Landsat is a centerpiece of NASA's Earth Science program," said NASA Administrator Charles Bolden in Washington. "Landsat 8 carries on a long tradition of Landsat satellites that for more than 40 years have helped us learn how Earth works, to understand how humans are affecting it and to make wiser decisions as stewards of this planet."
Beginning Thursday, USGS specialists will collect at least 400 Landsat 8 scenes every day from around the world to be processed and archived at the USGS Earth Resources Observation and Science Center in Sioux Falls. The newest satellite joins Landsat 7, which launched in 1999 and continues to collect images. Since 2008, USGS has provided more than 11 million current and historical Landsat images free of charge to users over the Internet.
"We are very pleased to work with NASA for the good of science and the American people," said U.S. Interior Secretary Sally Jewell in Washington. "The Landsat program allows us all to have a common, easily accessible view of our planet. This is the starting point for a shared understanding of the environmental challenges we face."
Remote-sensing satellites such as the Landsat series help scientists observe the world beyond the power of human sight, monitor changes to the land that may have natural or human causes, and detect critical trends in the conditions of natural resources.
The 41-year Landsat record provides global coverage at a scale that impartially documents natural processes such as volcanic eruptions, glacial retreat and forest fires and shows large-scale human activities such as expanding cities, crop irrigation and forest clear-cuts. The Landsat Program is a sustained effort by the United States to provide direct societal benefits across a wide range of human endeavors including human and environmental health, energy and water management, urban planning, disaster recovery, and agriculture.
With Landsat 8 circling Earth 14 times a day, and in combination with Landsat 7, researchers will be able to use an improved frequency of data from both satellites. The two observation instruments aboard Landsat 8 feature improvements over their earlier counterparts while collecting information that is compatible with 41 years of land images from previous Landsat satellites.
Friday, June 7, 2013
Wednesday, June 5, 2013
Monday, June 3, 2013
ASTRONAUTS ATTEND MAXWELL LEADERSHIP REACTION COURSE
FROM: U.S. AIR FORCE
Astronauts attend Maxwell Leadership Reaction Course
By Tech. Sgt. Sarah Loicano
Air University Public Affairs
5/31/2013 - MAXWELL AIR FORCE BASE, Ala. (AFNS) -- In a collaborative training effort, a group of six American and international astronauts participated in an abbreviated version of the Air University Leadership Reaction Course here May 22-23.
Designed to develop leadership skills, the LRC is a field exercise consisting of a series of obstacle course challenges that students navigate as teams during Officer Training School and Reserve Officer Training Corps courses. The astronauts visited the course to evaluate its potential usefulness for future leadership development.
"There are many different types of training and requirements for NASA astronauts, and we are looking at new ways to fulfill leadership obligations," said Peggy Whitson, the training lead for astronaut expeditionary skills at the NASA Johnson Space Center in Houston. The department is responsible for finding leadership opportunities for astronauts.
Whitson joined NASA's astronaut corps in 1996 and served as the chief of the Astronaut Office from 2009-2012. She was the first woman to lead the U.S. Astronaut Corps, as well as the first female commander of the International Space Station.
"This training provides us different scenarios and different ways of meeting core leadership training requirements. It allows us to practice teamwork, leadership, decision making," she said, adding that the test run of the training course might be something NASA would consider sending additional astronauts to attend.
During the course, students, or in this case, astronauts, were given a specific obstacle goal, rules and time limit, with a different team leader selected to take charge for each obstacle.
"This is an opportunity for mentors to see folks thrust into leadership situations and watch how they respond. The situations may change when you're out in the operational Air Force or even at the space station, but the issues don't change," said Maj. Rick Kallstrom, the director of operations for the Academy of Military Science at OTS. "You still need to lead, follow, problem-solve, communicate and build teamwork, and those are the same principles they are learning here."
Although there is a textbook solution for each obstacle, instructors don't necessarily care how students develop a solution. During their time on the course, the astronauts solved several obstacles in a different way than instructors had seen previously.
"It's more about how well did they lead, maintain control of their team and communicate," Kallstrom explained. "It's a good chance to take classroom lessons and apply to real-world scenarios."
Takuya Onishi, an astronaut from the Japanese Aerospace Exploration Agency, attended the course.
"I think this LRC is very good for our leadership and followership skills as well as team building. As we went through the first few tasks, I trusted my teammates very strongly, without any doubt," Onishi said.
That sense of trust and cooperation is essential, he said, for working in environments like the International Space Station, where different cultures and languages come together.
"This is more of a realistic situation that we may be in, and this training is really beneficial for us and for me, especially," he said. "When we have to work in a team in which crew members have different backgrounds, these obstacle courses help us build our relationship."
Astronauts attend Maxwell Leadership Reaction Course
By Tech. Sgt. Sarah Loicano
Air University Public Affairs
5/31/2013 - MAXWELL AIR FORCE BASE, Ala. (AFNS) -- In a collaborative training effort, a group of six American and international astronauts participated in an abbreviated version of the Air University Leadership Reaction Course here May 22-23.
Designed to develop leadership skills, the LRC is a field exercise consisting of a series of obstacle course challenges that students navigate as teams during Officer Training School and Reserve Officer Training Corps courses. The astronauts visited the course to evaluate its potential usefulness for future leadership development.
"There are many different types of training and requirements for NASA astronauts, and we are looking at new ways to fulfill leadership obligations," said Peggy Whitson, the training lead for astronaut expeditionary skills at the NASA Johnson Space Center in Houston. The department is responsible for finding leadership opportunities for astronauts.
Whitson joined NASA's astronaut corps in 1996 and served as the chief of the Astronaut Office from 2009-2012. She was the first woman to lead the U.S. Astronaut Corps, as well as the first female commander of the International Space Station.
"This training provides us different scenarios and different ways of meeting core leadership training requirements. It allows us to practice teamwork, leadership, decision making," she said, adding that the test run of the training course might be something NASA would consider sending additional astronauts to attend.
During the course, students, or in this case, astronauts, were given a specific obstacle goal, rules and time limit, with a different team leader selected to take charge for each obstacle.
"This is an opportunity for mentors to see folks thrust into leadership situations and watch how they respond. The situations may change when you're out in the operational Air Force or even at the space station, but the issues don't change," said Maj. Rick Kallstrom, the director of operations for the Academy of Military Science at OTS. "You still need to lead, follow, problem-solve, communicate and build teamwork, and those are the same principles they are learning here."
Although there is a textbook solution for each obstacle, instructors don't necessarily care how students develop a solution. During their time on the course, the astronauts solved several obstacles in a different way than instructors had seen previously.
"It's more about how well did they lead, maintain control of their team and communicate," Kallstrom explained. "It's a good chance to take classroom lessons and apply to real-world scenarios."
Takuya Onishi, an astronaut from the Japanese Aerospace Exploration Agency, attended the course.
"I think this LRC is very good for our leadership and followership skills as well as team building. As we went through the first few tasks, I trusted my teammates very strongly, without any doubt," Onishi said.
That sense of trust and cooperation is essential, he said, for working in environments like the International Space Station, where different cultures and languages come together.
"This is more of a realistic situation that we may be in, and this training is really beneficial for us and for me, especially," he said. "When we have to work in a team in which crew members have different backgrounds, these obstacle courses help us build our relationship."
Sunday, June 2, 2013
THE 275TH MARTIAN DAY
FROM: NASA
Curiosity at 'Cumberland'
NASA's Mars rover Curiosity used its front left Hazard-Avoidance Camera for this image of the rover's arm over the drilling target "Cumberland" during the 275th Martian day, or sol, of the rover's work on Mars (May 15, 2013).
The rover team plans to use Curiosity's drill to collect a powdered sample from the interior of the rock for analysis by laboratory instruments inside the rover. This is the mission's second rock-drilling target. The rover drove from its position beside the first drilling target, "John Klein," to its position beside Cumberland with drives of 121 inches (308 centimeters) on Sol 273 (May 13) and 26.6 inches (67.5 centimeters) on Sol 275. Curiosity's total odometry on Mars is now 2,385 feet (727 meters). Image credit: NASA/JPL-Caltech
Subscribe to:
Posts (Atom)