Monday, September 30, 2013
Sunday, September 29, 2013
HOT GAS ARMS IN COMA CLUSTER OF GALAXIES
FROM: NASA,
Clues to the Growth of the Colossus in Coma
A team of astronomers has discovered enormous arms of hot gas in the Coma cluster of galaxies by using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton. These features, which span at least half a million light years, provide insight into how the Coma cluster has grown through mergers of smaller groups and clusters of galaxies to become one of the largest structures in the universe held together by gravity.
A new composite image, with Chandra data in pink and optical data from the Sloan Digital Sky Survey appearing in white and blue, features these spectacular arms. In this image, the Chandra data have been processed so extra detail can be seen.
The X-ray emission is from multimillion-degree gas and the optical data shows galaxies in the Coma Cluster, which contain only about one-sixth the mass in hot gas. Only the brightest X-ray emission is shown here, to emphasize the arms, but the hot gas is present over the entire field of view.
Researchers think that these arms were most likely formed when smaller galaxy clusters had their gas stripped away by the head wind created by the motion of the cluster through the hot gas, in much the same way that the headwind created by a roller coaster blows the hats off riders.
Coma is an unusual galaxy cluster because it contains not one, but two giant elliptical galaxies near its center. These two giant elliptical galaxies are probably the vestiges from each of the two largest clusters that merged with Coma in the past. The researchers also uncovered other signs of past collisions and mergers in the data.
From their length, and the speed of sound in the hot gas (about four million km/hr), the newly discovered X-ray arms are estimated to be about 300 million years old, and they appear to have a rather smooth shape. This gives researchers some clues about the conditions of the hot gas in Coma. Most theoretical models expect that mergers between clusters like those in Coma will produce strong turbulence, like ocean water that has been churned by many passing ships. Instead, the smooth shape of these lengthy arms points to a rather calm setting for the hot gas in the Coma cluster, even after many mergers.
Large-scale magnetic fields are likely responsible for the small amount of turbulence that is present in Coma. Estimating the amount of turbulence in a galaxy cluster has been a challenging problem for astrophysicists. Researchers have found a range of answers, some of them conflicting, and so observations of other clusters are needed.
Two of the arms appear to be connected to a group of galaxies located about two million light years from the center of Coma. One or both of these arms connects to a larger structure seen in the XMM-Newton data, and spans a distance or at least 1.5 million light years. A very thin tail also appears behind one of the galaxies in Coma. This is probably evidence of gas being stripped from a single galaxy, in addition to the groups or clusters that have merged there.
These new results on the Coma cluster, which incorporate over six days worth of Chandra observing time, will appear in the September 20, 2013, issue of the journal Science. The first author of the paper is Jeremy Sanders from the Max Planck Institute for Extraterrestrial Physics in Garching, Germany. The co-authors are Andy Fabian from Cambridge University in the UK; Eugene Churazov from the Max Planck Institute for Astrophysics in Garching, Germany; Alexander Schekochihin from University of Oxford in the UK; Aurora Simionescu from Stanford University in Stanford, CA; Stephen Walker from Cambridge University in the UK and Norbert Werner from Stanford University in Stanford, CA.
NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra Program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
Credits: X-ray: NASA/CXC/MPE/J. Sanders et al; Optical: SDSS
Clues to the Growth of the Colossus in Coma
A team of astronomers has discovered enormous arms of hot gas in the Coma cluster of galaxies by using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton. These features, which span at least half a million light years, provide insight into how the Coma cluster has grown through mergers of smaller groups and clusters of galaxies to become one of the largest structures in the universe held together by gravity.
A new composite image, with Chandra data in pink and optical data from the Sloan Digital Sky Survey appearing in white and blue, features these spectacular arms. In this image, the Chandra data have been processed so extra detail can be seen.
The X-ray emission is from multimillion-degree gas and the optical data shows galaxies in the Coma Cluster, which contain only about one-sixth the mass in hot gas. Only the brightest X-ray emission is shown here, to emphasize the arms, but the hot gas is present over the entire field of view.
Researchers think that these arms were most likely formed when smaller galaxy clusters had their gas stripped away by the head wind created by the motion of the cluster through the hot gas, in much the same way that the headwind created by a roller coaster blows the hats off riders.
Coma is an unusual galaxy cluster because it contains not one, but two giant elliptical galaxies near its center. These two giant elliptical galaxies are probably the vestiges from each of the two largest clusters that merged with Coma in the past. The researchers also uncovered other signs of past collisions and mergers in the data.
From their length, and the speed of sound in the hot gas (about four million km/hr), the newly discovered X-ray arms are estimated to be about 300 million years old, and they appear to have a rather smooth shape. This gives researchers some clues about the conditions of the hot gas in Coma. Most theoretical models expect that mergers between clusters like those in Coma will produce strong turbulence, like ocean water that has been churned by many passing ships. Instead, the smooth shape of these lengthy arms points to a rather calm setting for the hot gas in the Coma cluster, even after many mergers.
Large-scale magnetic fields are likely responsible for the small amount of turbulence that is present in Coma. Estimating the amount of turbulence in a galaxy cluster has been a challenging problem for astrophysicists. Researchers have found a range of answers, some of them conflicting, and so observations of other clusters are needed.
Two of the arms appear to be connected to a group of galaxies located about two million light years from the center of Coma. One or both of these arms connects to a larger structure seen in the XMM-Newton data, and spans a distance or at least 1.5 million light years. A very thin tail also appears behind one of the galaxies in Coma. This is probably evidence of gas being stripped from a single galaxy, in addition to the groups or clusters that have merged there.
These new results on the Coma cluster, which incorporate over six days worth of Chandra observing time, will appear in the September 20, 2013, issue of the journal Science. The first author of the paper is Jeremy Sanders from the Max Planck Institute for Extraterrestrial Physics in Garching, Germany. The co-authors are Andy Fabian from Cambridge University in the UK; Eugene Churazov from the Max Planck Institute for Astrophysics in Garching, Germany; Alexander Schekochihin from University of Oxford in the UK; Aurora Simionescu from Stanford University in Stanford, CA; Stephen Walker from Cambridge University in the UK and Norbert Werner from Stanford University in Stanford, CA.
NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra Program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
Credits: X-ray: NASA/CXC/MPE/J. Sanders et al; Optical: SDSS
Saturday, September 28, 2013
Thursday, September 26, 2013
Wednesday, September 25, 2013
Tuesday, September 24, 2013
NASA PARTNERS WITH INDUSTRY TO FURTHER COMPOSITE MATERIALS RESEARCH
FROM: NASA
NASA Announces Advanced Composite Research Partnership
NASA has selected six companies from five U.S. states to participate in a government-and-industry partnership to advance composite materials research and certification.
The companies are:
• Bell Helicopter Textron Inc. of Fort Worth, Texas
• GE Aviation of Cincinnati
• Lockheed Martin Aeronautics Company of Palmdale, Calif.
• Northrop Grumman Aerospace Systems of Redondo Beach, Calif.
• Boeing Research & Technology of St. Louis
• United Technologies Corporation and subsidiary Pratt & Whitney of Hartford, Conn.
They were selected from 20 proposals submitted by teams from industry and academia in response to a call from the Advanced Composites Project, which is part of NASA's Aeronautics Research Mission Directorate's Integrated Systems Research Program. The project sought proposals to reduce the time for development, verification and regulatory acceptance of new composite materials and structures.
A panel of experts from NASA, the Federal Aviation Administration and the U.S. Air Force Research Laboratory reviewed the submissions and assessed them according to specific criteria. The six firms were chosen for their technical expertise, willingness and ability to share in costs, certification experience with government agencies, focused technology areas and partnership histories.
The first task for the partners is to develop articles of collaboration and establish how the alliance will work and how companies may be added in the future.
NASA Announces Advanced Composite Research Partnership
NASA has selected six companies from five U.S. states to participate in a government-and-industry partnership to advance composite materials research and certification.
The companies are:
• Bell Helicopter Textron Inc. of Fort Worth, Texas
• GE Aviation of Cincinnati
• Lockheed Martin Aeronautics Company of Palmdale, Calif.
• Northrop Grumman Aerospace Systems of Redondo Beach, Calif.
• Boeing Research & Technology of St. Louis
• United Technologies Corporation and subsidiary Pratt & Whitney of Hartford, Conn.
They were selected from 20 proposals submitted by teams from industry and academia in response to a call from the Advanced Composites Project, which is part of NASA's Aeronautics Research Mission Directorate's Integrated Systems Research Program. The project sought proposals to reduce the time for development, verification and regulatory acceptance of new composite materials and structures.
A panel of experts from NASA, the Federal Aviation Administration and the U.S. Air Force Research Laboratory reviewed the submissions and assessed them according to specific criteria. The six firms were chosen for their technical expertise, willingness and ability to share in costs, certification experience with government agencies, focused technology areas and partnership histories.
The first task for the partners is to develop articles of collaboration and establish how the alliance will work and how companies may be added in the future.
Monday, September 23, 2013
Sunday, September 22, 2013
AN ANTARES ROCKET LAUNCHES TO INTERNATIONAL SPACE STATION
FROM: NASA
The Orbital Sciences Corporation Antares rocket, with the Cygnus cargo spacecraft aboard, is seen in this false color infrared image, as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS), Wednesday, Sept. 18, 2013, NASA Wallops Flight Facility. NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station. The spacecraft will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew. Image Credit: NASA/Bill Ingalls
Saturday, September 21, 2013
Subscribe to:
Posts (Atom)