The International Space Station. Credit: NASA

Monday, January 30, 2012

26 NEW PLANETS ANNOUNCED BY NASA'S KEPLER PROGRAM SCIENTISTS


The following excerpt is from the NASA website:

NASA'S KEPLER ANNOUNCES 11 PLANETARY SYSTEMS HOSTING 26 PLANETS

"MOFFET FIELD, Calif. -- NASA's Kepler mission has discovered 11 new 
planetary systems hosting 26 confirmed planets. These discoveries 
nearly double the number of verified planets and triple the number of 
stars known to have more than one planet that transits, or passes in 
front of, the star. Such systems will help astronomers better 
understand how planets form.

The planets orbit close to their host stars and range in size from 1.5 
times the radius of Earth to larger than Jupiter. Fifteen are between 
Earth and Neptune in size. Further observations will be required to 
determine which are rocky like Earth and which have thick gaseous 
atmospheres like Neptune. The planets orbit their host star once 
every six to 143 days. All are closer to their host star than Venus 
is to our sun.

"Prior to the Kepler mission, we knew of perhaps 500 exoplanets across 
the whole sky," said Doug Hudgins, Kepler program scientist at NASA 
Headquarters in Washington. "Now, in just two years staring at a 
patch of sky not much bigger than your fist, Kepler has discovered 
more than 60 planets and more than 2,300 planet candidates. This 
tells us that our galaxy is positively loaded with planets of all 
sizes and orbits." 

Kepler identifies planet candidates by repeatedly measuring the change 
in brightness of more than 150,000 stars to detect when a planet 
passes in front of the star. That passage casts a small shadow toward 
Earth and the Kepler spacecraft.

Each of the new confirmed planetary systems contains two to five 
closely spaced transiting planets. In tightly packed planetary 
systems, the gravitational pull of the planets on each other causes 
some planets to accelerate and some to decelerate along their orbits. 
The acceleration causes the orbital period of each planet to change. 
Kepler detects this effect by measuring the changes, or so-called 
Transit Timing Variations (TTVs

Planetary systems with TTVs can be verified without requiring 
extensive ground-based observations, accelerating confirmation of 
planet candidates. The TTV detection technique also increases 
Kepler's ability to confirm planetary systems around fainter and more 
distant stars.

Five of the systems (Kepler-25, Kepler-27, Kepler-30, Kepler-31 and 
Kepler-33) contain a pair of planets where the inner planet orbits 
the star twice during each orbit of the outer planet. Four of the 
systems (Kepler-23, Kepler-24, Kepler-28 and Kepler-32) contain a 
pairing where the outer planet circles the star twice for every three 
times the inner planet orbits its star.

"These configurations help to amplify the gravitational interactions 
between the planets, similar to how my sons kick their legs on a 
swing at the right time to go higher," said Jason Steffen, the 
Brinson postdoctoral fellow at Fermilab Center for Particle 
Astrophysics in Batavia, Ill., and lead author of a paper confirming 
four of the systems.

Kepler-33, a star that is older and more massive than our sun, had the 
most planets. The system hosts five planets, ranging in size from 1.5 
to 5 times that of Earth. All of the planets are located closer to 
their star than any planet is to our sun.

The properties of a star provide clues for planet detection. The 
decrease in the star's brightness and duration of a planet transit, 
combined with the properties of its host star, present a recognizable 
signature. When astronomers detect planet candidates that exhibit 
similar signatures around the same star, the likelihood of any of 
these planet candidates being a false positive is very low.

"The approach used to verify the Kepler-33 planets shows the overall 
reliability is quite high," said Jack Lissauer, planetary scientist 
at NASA Ames Research Center at Moffett Field, Calif., and lead 
author of the paper on Kepler-33. "This is a validation by 
multiplicity." 

These discoveries are published in four different papers in the 
Astrophysical Journal and the Monthly Notices of the Royal 
Astronomical Society. 

Ames manages Kepler's ground system development, mission operations 
and science data analysis. NASA's Jet Propulsion Laboratory, 
Pasadena, Calif., managed the Kepler mission's development." 

Sunday, January 29, 2012

THE ORION SPACE VEHICLE




01/24/2012 12:00 AM EST
The Multi-Purpose Crew Vehicle (MPCV), or Orion, being assembled and tested at Lockheed Martin's Vertical Testing Facility in Colorado. Drawing from more than 50 years of spaceflight research and development, Orion is designed to meet the evolving needs of our nation's space program for decades to come. As the flagship of our nation's next-generation space fleet, Orion will push the envelope of human spaceflight far beyond low Earth orbit. Orion may resemble its Apollo-era predecessors, but its technology and capability are light years apart. Orion features dozens of technology advancements and innovations that have been incorporated into the spacecraft's subsystem and component design. A test version of the Orion spacecraft makes a stop at the Science Museum Oklahoma in Oklahoma City today, giving residents the chance to see a full scale test version of the vehicle that will take humans into deep space. Image Credit: Lockheed Martin

The above excerpt and picture are from the NASA website:

Saturday, January 28, 2012

NASA'S J-2X ENGINE HAS POWER PACK TESTED


The following excerpt is from the NASA website:

NASA'S J-2X ENGINE KICKS OFF 2012 WITH POWERPACK TESTING

"BAY ST. LOUIS, Miss. -- A new series of tests on the engine that will 
help carry humans to deep space will begin next week at NASA’s 
Stennis Space Center in southern Mississippi. The tests on the J-2X 
engine bring NASA one step closer to the first human-rated liquid 
oxygen and liquid hydrogen rocket engine to be developed in 40 years.

Tests will focus on the powerpack for the J-2X. This highly efficient 
and versatile advanced rocket engine is being designed to power the 
upper stage of NASA's Space Launch System, a new heavy-lift launch 
vehicle capable of missions beyond low-Earth orbit. The powerpack 
comprises components on the top portion of the engine, including the 
gas generator, oxygen and fuel turbopumps, and related ducts and 
valves that bring the propellants together to create combustion and 
generate thrust.

"The J-2X upper stage engine is vital to achieving the full launch 
capability of the heavy-lift Space Launch System," said William 
Gerstenmaier, NASA's associate administrator for the Human 
Exploration and Operations Mission Directorate. "The testing today 
will help insure that a key propulsion element is ready to support 
exploration across the solar system." 

About a dozen powerpack tests of varying lengths are slated now 
through summer at Stennis’ A-1 Test Stand. By separating the engine 
components -- the thrust chamber assembly, including the main 
combustion chamber, main injector and nozzle -- engineers can more 
easily push the various components to operate over a wide range of 
conditions to ensure the parts’ integrity, demonstrate the safety 
margin and better understand how the turbopumps operate. 

"By varying the pressures, temperatures and flow rates, the powerpack 
test series will evaluate the full range of operating conditions of 
the engine components," said Tom Byrd, J-2X engine lead in the SLS 
Liquid Engines Office at NASA's Marshall Space Flight Center in 
Huntsville, Ala. "This will enable us to verify the components' 
design and validate our analytical models against performance data, 
as well as ensure structural stability and verify the combustion 
stability of the gas generator."

This is the second powerpack test series for J-2X. The powerpack 1A 
was tested in 2008 with J-2S engine turbomachinery originally 
developed for the Apollo Program. Engineers tested these heritage 
components to obtain data to help them modify the design of the 
turbomachinery to meet the higher performance requirements of the 
J-2X engine. 

"The test engineers on the A-1 test team are excited and ready to 
begin another phase of testing which will provide critical data in 
support of the Space Launch System," said Gary Benton, J-2X engine 
testing project manager at Stennis.

J-2X is being developed for Marshall by Pratt & Whitney Rocketdyne of 
Canoga Park, Calif."

Friday, January 27, 2012

APOLLO 1 CREW REMEMBERED





The crew of the Apollo 1 spacecraft are remembered:  Gus Grissom, Edward H. White II and, Walter B. Chaffee.  On January 27, 1967 they were killed when fire erupted during a test. Picture courtesy of NASA.

Thursday, January 26, 2012

NASA'S SUOMI NPP SATELLITE TAKES A PICTURE OF EARTH




The above picture and below article are from the NASA website:

"A 'Blue Marble' image of the Earth taken from the VIIRS instrument aboard NASA's most recently launched Earth-observing satellite - Suomi NPP. This composite image uses a number of swaths of the Earth's surface taken on January 4, 2012. The NPP satellite was renamed 'Suomi NPP' on January 24, 2012 to honor the late Verner E. Suomi of the University of Wisconsin. Suomi NPP is NASA's next Earth-observing research satellite. It is the first of a new generation of satellites that will observe many facets of our changing Earth. Suomi NPP is carrying five instruments on board. The biggest and most important instrument is The Visible/Infrared Imager Radiometer Suite or VIIRS.

Monday, January 23, 2012

APPLICATION FOR ASTRONAUT CLASS IS ENDING SOON


The following excerpt is from the NASA website:

"HOUSTON -- Individuals interested in becoming America's future space 
explorers have until Friday to submit their applications. The 
deadline to apply for NASA's next astronaut class is Jan. 27.

The agency typically receives as many as 3,500 applicants for each 
astronaut class. Thus far, NASA has received more than 3,000 
applications since November for this class. 

"We are excited about the response we have received, and we want to 
encourage anyone contemplating this dynamic and exciting career to 
apply," said Peggy Whitson, chief of the Astronaut Office. "We are 
entering a new phase in human spaceflight with amazing opportunities 
to live and work in space. We want the best, the brightest and the 
most talented mix of professionals to join our team."

Those interested in applying for the astronaut corps can submit their 
applications through the federal government's USAJobs.gov website. 
Qualifications include a bachelor's degree in engineering, science or 
math and three years of relevant professional experience. Educators 
teaching kindergarten through 12th grade also are encouraged to 
apply.

NASA expects to announce the final selections in 2013 with initial 
training to begin that summer.

For more information about the astronaut application and selection 
process and to follow the latest news via NASA accounts on Twitter, 
Facebook and YouTube, visit: 

http://www.nasa.gov/flynasa"

Friday, January 20, 2012

NASA ROVERS: GENERATIONS


The following picture and excerpt are from the NASA website:


01/19/2012 12:00 AM EST

Two spacecraft engineers join a grouping of vehicles providing a comparison of three generations of Mars rovers developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The setting is JPL's Mars Yard testing area. Front and center is the flight spare for the first Mars rover, Sojourner, which landed on Mars in 1997 as part of the Mars Pathfinder Project. On the left is a Mars Exploration Rover Project test rover that is a working sibling to Spirit and Opportunity, which landed on Mars in 2004. On the right is a Mars Science Laboratory test rover the size of that project's Mars rover, Curiosity, which is on course for landing on Mars in August 2012. Sojourner and its flight spare, named Marie Curie, are 2 feet (65 centimeters) long. The Mars Exploration Rover Project's rover, including the "Surface System Test Bed" rover in this photo, are 5.2 feet (1.6 meters) long. The Mars Science Laboratory Project's Curiosity rover and "Vehicle System Test Bed" rover, on the right, are 10 feet (3 meters) long. The engineers are JPL's Matt Robinson, left, and Wesley Kuykendall. The California Institute of Technology, in Pasadena, operates JPL for NASA. Image credit: NASA/JPL-Caltech

Thursday, January 19, 2012

DEFENSE AND STATE DEPARTMENTS PLAN FOR OUTER SPACE CODE OF CONDUCT


The following excerpt is from the Department of Defense American Forces Press Service:

“Defense, State Agree to Pursue Conduct Code for Outer Space
By Lisa Daniel

American Forces Press Service
WASHINGTON, Jan. 18, 2012 - The departments of Defense and State have agreed an international code of conduct should govern activities in outer space, and officials announced plans to work with the European Union to develop it.

Pentagon Press Secretary George Little yesterday issued a statement saying DOD "supports the concept" of an international code of conduct for outer space activities.
"An international code of conduct can enhance U.S. national security by encouraging responsible space behavior by reducing the risk of mishaps, misperceptions and mistrust," he said.

Little added that a European Union draft plan "is a promising basis for an international code."

Little's statement followed Secretary of State Hillary Rodham Clinton's announcement yesterday that the United States has decided to join with the European Union and other nations to develop a code of conduct, which she said "will help maintain the long-term sustainability, safety, stability, and security of space by establishing guidelines for the responsible use of space."

Clinton's announcement came two days after a Russian spacecraft crashed into the Pacific Ocean about 700 miles west of Chile. The European Union issued its proposal about the same time as another space mishap – the February 2009 collision between a commercial satellite and that of a Russian military satellite, according to reports.

"The long-term sustainability of our space environment is at serious risk from space debris and irresponsible actors," Clinton said. "Ensuring the stability, safety and security of our space systems is of vital interest to the United States and the global community. These systems allow the free flow of information across platforms that open up our global markets, enhance weather forecasting and environmental monitoring, and enable global navigation and transportation.

"Unless the international community addresses these challenges," Clinton continued, "the environment around our planet will become increasingly hazardous to human space flight and satellite systems, which would create damaging consequences for all of us."

Opponents of the European Union plan have said it would restrict U.S. military options. But Clinton said yesterday that the U.S. government "has made clear to our partners that we will not enter into a code of conduct that in any way constrains our national security-related activities in space, or our ability to protect the United States and our allies."

In early 2011, then-Defense Secretary Robert M. Gates and Director of National Intelligence James R. Clapper approved a National Security Space Strategy designed to govern congestion and competition in space, as well as contested areas of space.”

Wednesday, January 18, 2012

ORION SPACECRAFT TO GO ON TOUR


The above picture and following excerpt is from the NASA website:

NASA'S ORION SPACECRAFT TO LAND IN OKLAHOMA, TEXAS AND ALABAMA

W”ASHINGTON -- A test version of NASA's Orion spacecraft soon will make
a cross-country journey, giving residents in three states the chance
to see a full scale test version of the vehicle that will take humans
into deep space.

The crew module will make stops during a trip from the White Sands
Missile Range in New Mexico to the Kennedy Space Center in Florida.
The planned stops include Jan. 23-25 at Science Museum Oklahoma in
Oklahoma City; Jan. 27-29 at Victory Park and the American Airlines
Center in Dallas; and, Jan. 31-Feb. 2 at the U.S. Space and Rocket
Center in Huntsville, Ala. Engineers, program officials, astronauts
and NASA spokespeople will be available to speak with the media and
the public.

The full-scale test vehicle was used by ground crews in advance of the
launch abort system flight test that took place in New Mexico in
2010.

Media interested in seeing the spacecraft or scheduling interviews
should contact Dan Huot at daniel.g.huot@nasa.gov or by calling the
newsroom at NASA's Johnson Space Center in Houston at 281-483-5111.

Orion will serve as the vehicle that takes astronauts beyond low-Earth
orbit. The first orbital flight test is scheduled for 2014.”

Sunday, January 15, 2012

FERMI SPACE TELESCOPE LOOKS AT UNEXPLORED ELECTROMAGNETIC RANGE


The following excerpt is from the NASA website:

“WASHINGTON -- After more than three years in space, NASA's Fermi
Gamma-ray Space Telescope is extending its view of the high-energy
sky into a largely unexplored electromagnetic range. Today, the Fermi
team announced its first census of energy sources in this new realm.

Fermi's Large Area Telescope (LAT) scans the entire sky every three
hours, continually deepening its portrait of the sky in gamma rays,
the most energetic form of light. While the energy of visible light
falls between about 2 and 3 electron volts, the LAT detects gamma
rays with energies ranging from 20 million to more than 300 billion
electron volts (GeV).

At higher energies, gamma rays are rare. Above 10 GeV, even Fermi's
LAT detects only one gamma ray every four months.

"Before Fermi, we knew of only four discrete sources above 10 GeV, all
of them pulsars," said David Thompson, an astrophysicist at NASA's
Goddard Space Flight Center in Greenbelt, Md. "With the LAT, we've
found hundreds, and we're showing for the first time just how diverse
the sky is at these high energies."

Any object producing gamma rays at these energies is undergoing
extraordinary astrophysical processes. More than half of the 496
sources in the new census are active galaxies, where matter falling
into a supermassive black hole powers jets that spray out particles
at nearly the speed of light.

Only about 10 percent of the known sources lie within our own galaxy.
They include rapidly rotating neutron stars called pulsars, the
expanding debris from supernova explosions, and in a few cases,
binary systems containing massive stars.

More than a third of the sources are completely unknown, having no
identified counterpart detected in other parts of the spectrum. With
the new catalog, astronomers will be able to compare the behavior of
different sources across a wider span of gamma-ray energies for the
first time.

Just as bright infrared sources may fade to invisibility in the
ultraviolet, some of the gamma-ray sources above 1 GeV vanish
completely when viewed at higher, or "harder," energies.

One example is the well-known radio galaxy NGC 1275, which is a
bright, isolated source below 10 GeV. At higher energies it fades
appreciably and another nearby source begins to appear. Above 100
GeV, NGC 1275 becomes undetectable by Fermi, while the new source,
the radio galaxy IC 310, shines brightly.

The Fermi hard-source list is the product of an international team led
by Pascal Fortin at the Ecole Polytechnique's Laboratoire
Leprince-Ringuet in Palaiseau, France, and David Paneque at the Max
Planck Institute for Physics in Munich.

The catalog serves as an important roadmap for ground-based facilities
called Atmospheric Cherenkov Telescopes, which have amassed about 130
gamma-ray sources with energies above 100 GeV. They include the Major
Atmospheric Gamma Imaging Cherenkov telescope (MAGIC) on La Palma in
the Canary Islands, the Very Energetic Radiation Imaging Telescope
Array System (VERITAS) in Arizona, and the High Energy Stereoscopic
System (H.E.S.S.) in Namibia.

"Our catalog will have a significant impact on ground-based
facilities' work by pointing them to the most likely places to find
gamma-ray sources emitting above 100 GeV," Paneque said.

Compared to Fermi's LAT, these ground-based observatories have much
smaller fields of view. They also make fewer observations because
they cannot operate during daytime, bad weather or a full moon.

"As Fermi's exposure constantly improves our view of hard sources,
ground-based telescopes are becoming more sensitive to lower-energy
gamma rays, allowing us to bridge these two energy regimes," Fortin
added.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle
physics partnership. Fermi is managed by Goddard. It was developed in
collaboration with the U.S. Department of Energy, with important
contributions from academic institutions and partners in France,
Germany, Italy, Japan, Sweden and the United States.”



Friday, January 13, 2012

TEST FLIGHT OF NEW NASA ROCKET LAUNCHED JANUARY 11, 2012


   
                                                The following excerpt is from the NASA website:

“A NASA Terrier-Improved Malemute suborbital sounding rocket was successfully launched this morning, Jan. 11, 2012, at 8:25 from the Wallops Flight Facility. This was a test flight of the vehicle being developed to support NASA suborbital science missions. Image Credit: NASA”

Wednesday, January 11, 2012

HUBBLE TELESCOPE MAKES DISTANT SUPERNOVA DISCOVERY


                                                         Picture Courtesy NASA Website

“WASHINGTON -- NASA's Hubble Space Telescope has looked deep into the
distant universe and detected the feeble glow of a star that exploded
more than 9 billion years ago. The sighting is the first finding of
an ambitious survey that will help astronomers place better
constraints on the nature of dark energy, the mysterious repulsive
force that is causing the universe to fly apart ever faster.

"For decades, astronomers have harnessed the power of Hubble to
unravel the mysteries of the universe," said John Grunsfeld,
associate administrator for NASA’s Science Mission Directorate in
Washington. "This new observation builds upon the revolutionary
research using Hubble that won astronomers the 2011 Nobel Prize in
Physics, while bringing us a step closer to understanding the nature
of dark energy which drives the cosmic acceleration." As an
astronaut, Grunsfeld visited Hubble three times, performing a total
of eight spacewalks to service and upgrade the observatory.

The stellar explosion, nicknamed SN Primo, belongs to a special class
called Type Ia supernovae, which are bright beacons used as distance
markers for studying the expansion rate of the universe. Type Ia
supernovae likely arise when white dwarf stars, the burned-out cores
of normal stars, siphon too much material from their companion stars
and explode.

SN Primo is the farthest Type Ia supernova with its distance confirmed
through spectroscopic observations. In these types of observations, a
spectrum splits the light from a supernova into its constituent
colors. By analyzing those colors, astronomers can confirm its
distance by measuring how much the supernova's light has been
stretched, or red-shifted, into near-infrared wavelengths because of
the expansion of the universe.

The supernova was discovered as part of a three-year Hubble program to
survey faraway Type Ia supernovae, opening a new distance realm for
searching for this special class of stellar explosion. The remote
supernovae will help astronomers determine whether the exploding
stars remain dependable cosmic yardsticks across vast distances of
space in an epoch when the cosmos was only one-third its current age
of 13.7 billion years.

Called the CANDELS+CLASH Supernova Project, the census uses the
sharpness and versatility of Hubble's Wide Field Camera 3 (WFC3) to
assist astronomers in the search for supernovae in near-infrared
light and verify their distance with spectroscopy. CANDELS is the
Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey and
CLASH is the Cluster Lensing and Supernova Survey.

"In our search for supernovae, we had gone as far as we could go in
optical light," said Adam Riess, the project's lead investigator, at
the Space Telescope Science Institute and The Johns Hopkins
University in Baltimore, Md. "But it's only the beginning of what we
can do in infrared light. This discovery demonstrates that we can use
the Wide Field Camera 3 to search for supernovae in the distant
universe."

The new results were presented on Jan. 11 at the American Astronomical
Society meeting in Austin, Texas.

The supernova team's search technique involved taking multiple
near-infrared images over several months, looking for a supernova's
faint glow. After the team spotted the stellar blast in October 2010,
they used WFC3's spectrometer to verify SN Primo's distance and to
decode its light, finding the unique signature of a Type Ia
supernova. The team then re-imaged SN Primo periodically for eight
months, measuring the slow dimming of its light.

By taking the census, the astronomers hope to determine the frequency
of Type Ia supernovae during the early universe and glean insights
into the mechanisms that detonated them.

"If we look into the early universe and measure a drop in the number
of supernovae, then it could be that it takes a long time to make a
Type Ia supernova," said team member Steve Rodney of The Johns
Hopkins University. "Like corn kernels in a pan waiting for the oil
to heat up, the stars haven't had enough time at that epoch to evolve
to the point of explosion. However, if supernovae form very quickly,
like microwave popcorn, then they will be immediately visible, and
we'll find many of them, even when the universe was very young. Each
supernova is unique, so it's possible that there are multiple ways to
make a supernova."

If astronomers discover that Type Ia supernovae begin to depart from
how they expect them to look, they might be able to gauge those
changes and make the measurements of dark energy more precise. Riess
and two other astronomers shared the 2011 Nobel Prize in Physics for
discovering dark energy 13 years ago, using Type Ia supernova to plot
the universe's expansion rate.

The Hubble Space Telescope is a project of international cooperation
between NASA and the European Space Agency. NASA's Goddard Space
Flight Center manages the telescope. The Space Telescope Science
Institute (STScI) conducts Hubble science operations. STScI is
operated for NASA by the Association of Universities for Research in
Astronomy, Inc., in Washington, D.C.”


Tuesday, January 10, 2012

NASA SAYS MINERAL VEIN FOUND ON MARS WAS DEPOSITED BY WATER

"Mars Rover Finds Mineral Vein Deposited by Water WASHINGTON -- NASA's Mars Exploration Rover Opportunity has found bright veins of a mineral, apparently gypsum, deposited by water. Analysis of the vein will help improve understanding of the history of wet environments on Mars.

"This tells a slam-dunk story that water flowed through underground fractures in the rock," said Steve Squyres of Cornell University, principal investigator for Opportunity. "This stuff is a fairly pure chemical deposit that formed in place right where we see it. That can't be said for other gypsum seen on Mars or for other water-related minerals Opportunity has found. It's not uncommon on Earth, but on Mars, it's the kind of thing that makes geologists jump out of their chairs."

The latest findings by Opportunity were presented Wednesday at the American Geophysical Union's conference in San Francisco.

The vein examined most closely by Opportunity is about the width of a human thumb (0.4 to 0.8 inch), 16 to 20 inches long, and protrudes slightly higher than the bedrock on either side of it. Observations by the durable rover reveal this vein and others like it within an apron surrounding a segment of the rim of Endeavour Crater. None like it were seen in the 20 miles (33 kilometers) of crater-pocked plains that Opportunity explored for 90 months before it reached Endeavour, nor in the higher ground of the rim.

Last month, researchers used the Microscopic Imager and Alpha Particle X-ray Spectrometer on the rover's arm and multiple filters of the Panoramic Camera on the rover's mast to examine the vein, which is informally named "Homestake." The spectrometer identified plentiful calcium and sulfur, in a ratio pointing to relatively pure calcium sulfate.

Calcium sulfate can exist in many forms, varying by how much water is bound into the minerals' crystalline structure. The multi-filter data from the camera suggest gypsum, a hydrated calcium sulfate. On Earth, gypsum is used for making drywall and plaster of Paris.

Observations from orbit have detected gypsum on Mars previously. A dune field of windblown gypsum on far northern Mars resembles the glistening gypsum dunes in White Sands National Monument in New Mexico.

"It is a mystery where the gypsum sand on northern Mars comes from," said Opportunity science-team member Benton Clark of the Space Science Institute in Boulder, Colo. "At Homestake, we see the mineral right where it formed. It will be important to see if there are deposits like this in other areas of Mars."

The Homestake deposit, whether gypsum or another form of calcium sulfate, likely formed from water dissolving calcium out of volcanic rocks. The minerals combined with sulfur either leached from the rocks or introduced as volcanic gas, and was deposited as calcium sulfate into an underground fracture that later became exposed at the surface.

Throughout Opportunity's long traverse across Mars' Meridiani plain, the rover has driven over bedrock composed of magnesium, iron and calcium sulfate minerals that also indicate a wet environment billions of years ago. The highly concentrated calcium sulfate at Homestake could have been produced in conditions more neutral than the harshly acidic conditions indicated by the other sulfate deposits observed by Opportunity.

"It could have formed in a different type of water environment, one more hospitable for a larger variety of living organisms," Clark said.

Homestake and similar-looking veins appear in a zone where the sulfate-rich sedimentary bedrock of the plains meets older, volcanic bedrock exposed at the rim of Endeavour. That location may offer a clue about their origin.

"We want to understand why these veins are in the apron but not out on the plains," said the mission's deputy principal investigator, Ray Arvidson, of Washington University in St. Louis. "The answer may be that rising groundwater coming from the ancient crust moved through material adjacent to Cape York and deposited gypsum, because this material would be relatively insoluble compared with either magnesium or iron sulfates."

Opportunity and its rover twin, Spirit, completed their three-month prime missions on Mars in April 2004. Both rovers continued for years of extended missions and made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life. Spirit stopped communicating in 2010. Opportunity continues exploring, currently heading to a sun-facing slope on the northern end of the Endeavour rim fragment called "Cape York" to keep its solar panels at a favorable angle during the mission's fifth Martian winter.

NASA launched the next-generation Mars rover, the car-sized Curiosity, on Nov. 26. It is slated for arrival at the planet's Gale Crater in August 2012.

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover Project for the NASA Science Mission Directorate in Washington".

NASA LAUNCH CHALLENGE WILL HAVE 57 TEAM PARTICIPANTS IN APRIL 2012


The following excerpt is from the NASA website:

“HUNTSVILLE, Ala. -- More than 500 students from middle schools, high
schools, colleges and universities in 29 states will show their
rocketeering prowess in the 2011-12 NASA Student Launch Projects
flight challenge. The teams will build and test large-scale rockets
of their own design in April 2012.

NASA created the twin Student Launch Projects to spark students'
imaginations, challenge their problem-solving skills and give them
real-world experience. The project aims to complement the science,
mathematics and engineering lessons they study in the classroom.

"Just as NASA partners with innovative companies such as ATK to pursue
the nation's space exploration mission, these young rocketeers pool
their talent and ingenuity to solve complex engineering problems and
fly sophisticated machines,” said Tammy Rowan, manager of Marshall's
Academic Affairs Office.

A record 57 teams of engineering, math and science students will take
part in the annual challenge, organized by NASA's Marshall Space
Flight Center in Huntsville, Ala. Fifteen middle and high school
teams will tackle the non-competitive Student Launch Initiative,
while 42 college and university teams will compete in the University
Student Launch Initiative. The latter features a $5,000 first-place
award provided by ATK Aerospace Systems of Salt Lake City, Utah.

"This competition is extremely important to ATK to mentor and train
our future workforce," said Charlie Precourt, ATK general manager and
vice president of Space Launch Systems. Precourt is a former space
shuttle astronaut who piloted STS-71 in 1995 and commanded STS-84 in
1997 and STS-91 in 1998. "ATK is proud to enter our fifth year as a
partner with NASA on this initiative to engage the next generation.
The competition grows in impact each year."

Each Student Launch Projects team will build a powerful rocket,
complete with a working science or engineering payload, which the
team must design, install and activate during the rocket launch. The
flight goal is to come as close as possible to an altitude of 1 mile,
requiring a precise balance of aerodynamics, mass and propulsive
power.

As in classroom studies, participants must "show their work," writing
detailed preliminary and post-launch reports and maintaining a public
website for their rocket-building adventure. Each team also must
develop educational engagement projects for schools and youth
organizations in its community, inspiring the imaginations and career
passions of future explorers.

In April, the teams will converge at Marshall, where NASA engineers
will put the students' creations through the same kind of rigorous
reviews and safety inspections applied to the nation's space launch
vehicles. On April 21, 2012, students will firing their rockets
toward the elusive 1-mile goal, operating onboard payloads and
waiting for chutes to open, signaling a safe return to Earth.

The student teams will vie for a variety of awards for engineering
skill and ingenuity, team spirit and vehicle design. These include
two new prizes: a pair of TDS2000 Series oscilloscopes, which are
sophisticated tools for studying the change in flow of electrical
voltage or current. Donated by Tektronix Inc. of Beaverton, Ore., the
oscilloscopes will be presented to the two school teams that earn the
"Best Payload" and "Best Science Mission Directorate Challenge
Payload" honors.

This year's participants hail from Alabama, Arkansas, California,
Colorado, Florida, Georgia, Hawaii, Iowa, Illinois, Indiana, Kansas,
Kentucky, Massachusetts, Michigan, Minnesota, Missouri, Mississippi,
North Carolina, North Dakota, Nebraska, New Mexico, New York,
Pennsylvania, Tennessee, Texas, Utah, Virginia, Washington and
Wisconsin.”



Sunday, January 8, 2012

CASSINI LOOKS AT SOUTH POLE OF SATURN MOON


The following excerpt is from the NASA website:

“This view from NASA's Cassini spacecraft looks toward the south polar region of Saturn's largest moon, Titan, and shows a depression within the moon's orange and blue haze layers near the south pole. The moon's high altitude haze layer appears blue here; whereas, the main atmospheric haze is orange. The difference in color could be due to particle size of the haze. The blue haze likely consists of smaller particles than the orange haze. The depressed or attenuated layer appears in the transition area between the orange and blue hazes about a third of the way in from the left edge of the narrow-angle image. The moon's south pole is in the upper right of this image. This view suggests Titan's north polar vortex, or hood, is beginning to flip from north to south. The southern pole of Titan is going into darkness as the sun advances towards the north with each passing day. The upper layer of Titan's hazes is still illuminated by sunlight. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were obtained on Sept. 11, 2011 at a distance of approximately 83,000 miles (134,000 kilometers) from Titan. Image scale is 2,581 feet (787 meters) per pixel. Image Credit: NASA/JPL-Caltech/Space Science Institute
This e-mail update was generated automatically based on your subscriptions. Some updates may belong to more than one category, resulting in duplicate notices.”