Tuesday, April 30, 2013
Monday, April 29, 2013
Sunday, April 28, 2013
IN THE CONSTELLATION URSA MAJOR LIES NGC 2768
FROM: NASA
The soft glow in this image is NGC 2768, an elliptical galaxy located in the northern constellation of Ursa Major (The Great Bear). NGC 2768 appears here as a bright oval on the sky, surrounded by a wide, fuzzy cloud of material. This image, taken by the NASA/ESA Hubble Space Telescope, shows the dusty structure encircling the center of the galaxy, forming a knotted ring around the galaxy’s brightly glowing middle. Interestingly, this ring lies perpendicular to the plane of NGC 2768 itself, stretching up and out of the galaxy. The dust in NGC 2768 forms an intricate network of knots and filaments. In the center of the galaxy are two tiny, S-shaped symmetric jets. These two flows of material travel outwards from the galactic center along curved paths, and are masked by the tangle of dark dust lanes that spans the body of the galaxy. These jets are a sign of a very active center. NGC 2768 is an example of a Seyfert galaxy, an object with a supermassive black hole at its center. This speeds up and sucks in gas from the nearby space, creating a stream of material swirling inwards towards the black hole known as an accretion disk. This disk throws off material in very energetic outbursts, creating structures like the jets seen in the image above. Image Credit: NASA/ESA/Hubble
Saturday, April 27, 2013
THE LUNAR ATMOSPHERE
The Lunar Atmospheric Composition Experiment . CREDIT: NASA |
Article author: Brian Day
Until recently, most everyone accepted the conventional wisdom that the moon has virtually no atmosphere. Just as the discovery of water on the moon transformed our textbook knowledge of Earth’s nearest celestial neighbor, recent studies confirm that our moon does indeed have an atmosphere consisting of some unusual gases, including sodium and potassium, which are not found in the atmospheres of Earth, Mars or Venus. It’s an infinitesimal amount of air when compared to Earth’s atmosphere. At sea level on Earth, we breathe in an atmosphere where each cubic centimeter contains 10,000,000,000,000,000,000 molecules; by comparison the lunar atmosphere has less than 1,000,000 molecules in the same volume. That still sounds like a lot, but it is what we consider to be a very good vacuum on Earth. In fact, the density of the atmosphere at the moon’s surface is comparable to the density of the outermost fringes of Earth’s atmosphere where the International Space Station orbits.
What is the moon’s atmosphere made of? We have some clues. The Apollo 17 mission deployed an instrument called the Lunar Atmospheric Composition Experiment (LACE) on the moon’s surface. It detected small amounts of a number of atoms and molecules including helium, argon, and possibly neon, ammonia, methane and carbon dioxide. From here on Earth, researchers using special telescopes that block light from the moon’s surface have been able to make images of the glow from sodium and potassium atoms in the moon’s atmosphere as they are energized by the sun. Still, we only have a partial list of what makes up the lunar atmosphere. Many other species are expected.
We think that there are several sources for gases in the moon’s atmosphere. These include high energy photons and solar wind particles knocking atoms from the lunar surface, chemical reactions between the solar wind and lunar surface material, evaporation of surface material, material released from the impacts of comets and meteoroids, and out-gassing from the moon’s interior. But which of these sources and processes are important on the moon? We still don’t know.
With the discovery of significant ice deposits at the moon’s poles by NASA's Lunar CRater Observation and Sensing Satellite (LCROSS) and Lunar Reconnaissance Orbiter (LRO) missions, and the discovery of a thin scattering of water molecules in the lunar soil by the Chandrayaan X-ray Observatory, another fascinating possibility has captured researchers’ interest. The moon’s atmosphere may play a key role in a potential lunar water cycle, facilitating the transport of water molecules between polar and lower latitude areas. The moon may not only be wetter than we once thought, but also more dynamic.
One of the critical differences between the atmospheres of Earth and the moon is how atmospheric molecules move. Here in the dense atmosphere at the surface of Earth, the molecules’ motion is dominated by collisions between the molecules. However the moon’s atmosphere is so thin, atoms and molecules almost never collide. Instead, they are free to follow arcing paths determined by the energy they received from the processes described above and by the gravitational pull of the moon.
The technical name for this type of thin, collision-free atmosphere that extends all the way down to the ground is a "surface boundary exosphere." Scientists believe this may be the most common type of atmosphere in the solar system. In addition to the moon, Mercury, the larger asteroids, a number of the moons of the giant planets and even some of the distant Kuiper belt objects out beyond the orbit of Neptune, all may have surface boundary exospheres. But in spite of how common this type of atmosphere is, we know very little about it. Having one right next door on our moon provides us with an outstanding opportunity to improve our understanding.
Among the goals of the Lunar Atmosphere and Dust Environment Explorer (LADEE) are to determine the composition and structure of the tenuous lunar atmosphere and to understand how these change with time, and as external conditions vary. LADEE’s measurements come at a key time: with increasing interest in the moon by a number of nations, future missions could significantly affect the natural composition of the lunar atmosphere.
Friday, April 26, 2013
THE LAUNCH OF THE ANTARES ROCKET
FROM: NASA
The Orbital Sciences Corporation Antares rocket is seen as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013.
The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit.
Image Credit: NASA/Bill Ingalls
Thursday, April 25, 2013
Wednesday, April 24, 2013
Tuesday, April 23, 2013
Monday, April 22, 2013
NASA VIEW OF THE HORSEHEAD NEBULA
FROM: NASA
Hubble Sees a Horsehead of a Different Color
Astronomers have used NASA's Hubble Space Telescope to photograph the iconic Horsehead Nebula in a new, infrared light to mark the 23rd anniversary of the famous observatory's launch aboard the space shuttle Discovery on April 24, 1990.
Looking like an apparition rising from whitecaps of interstellar foam, the iconic Horsehead Nebula has graced astronomy books ever since its discovery more than a century ago. The nebula is a favorite target for amateur and professional astronomers. It is shadowy in optical light. It appears transparent and ethereal when seen at infrared wavelengths. The rich tapestry of the Horsehead Nebula pops out against the backdrop of Milky Way stars and distant galaxies that easily are visible in infrared light.
Hubble has been producing ground-breaking science for two decades. During that time, it has benefited from a slew of upgrades from space shuttle missions, including the 2009 addition of a new imaging workhorse, the high-resolution Wide Field Camera 3 that took the new portrait of the Horsehead. Image Credit-NASA-ESA-Hubble Heritage Team.
Sunday, April 21, 2013
THE FIRST SHUTTLE LAUNCH
FROM: NASA
A new era in space flight began on April 12, 1981, when Space Shuttle Columbia, or STS-1, soared into orbit from NASA's Kennedy Space Center in Florida. Astronaut John Young, a veteran of four previous spaceflights including a walk on the moon in 1972, commanded the mission. Navy test pilot Bob Crippen piloted the mission and would go on to command three future shuttle missions. The shuttle was humankind's first re-usable spacecraft. The orbiter would launch like a rocket and land like a plane. The two solid rocket boosters that helped push them into space would also be re-used, after being recovered in the ocean. Only the massive external fuel tank would burn up as it fell back to Earth. It was all known as the Space Transportation System. Twenty years prior to the historic launch, on April 12, 1961, the era of human spaceflight began when Russian Cosmonaut Yuri Gagarin became the first human to orbit the Earth in his Vostock I spacecraft. The flight lasted 108 minutes. Pictured here: a timed exposure of STS-1, at Launch Pad A, Complex 39, turns the space vehicle and support facilities into a night- time fantasy of light. Structures to the left of the shuttle are the fixed and the rotating service structure. Image Credit: NASA
Saturday, April 20, 2013
X-48 PROJECT COMPLETES RESEARCH
FROM: NASA
X-48 Project Completes Flight Research for Cleaner, Quieter Aircraft
EDWARDS, Calif. -- NASA's remotely piloted X-48C hybrid-wing-body subscale aircraft, which demonstrates technology concepts for cleaner and quieter commercial air travel, completed an eight-month flight research campaign on April 9.
The C model of the X-48 aircraft flew its first flight at Edwards Aug. 7 and its 30th flight brought the productive research project to a close.
"We have accomplished our goals of establishing a ground-to-flight database, and proving the low speed controllability of the concept throughout the flight envelope," said Fay Collier, manager of NASA's Environmentally Responsible Aviation project. "Very quiet and efficient, the hybrid wing body has shown promise for meeting all of NASA's environmental goals for future aircraft designs."
The scale-model aircraft, shaped like a manta ray, was designed by The Boeing Co., built by Cranfield Aerospace Limited of the United Kingdom, and flown in partnership with NASA. The X-48C is a version of NASA's X-48B blended wing body aircraft modified to evaluate the low-speed stability and control of a low-noise version of a notional hybrid-wing-body design. This design features a flattened fuselage with no tail, and engines mounted on top of the fuselage at the rear of the plane. The design stems from concept studies for commercial aircraft that could be flying within 20 years. The studies are under way in NASA's Environmentally Responsible Aviation Project.
"Our team has done what we do best: flight-test a unique aircraft and repeatedly collect data that will be used to design future 'green' airliners," said Heather Maliska, X-48C project manager at NASA's Dryden Flight Research Center in California. "It is bittersweet to see the program come to an end, but we are proud of the safe and extremely successful joint Boeing and NASA flight test program that we have conducted."
The X-48C retained most dimensions of the B model, with a wingspan slightly longer than 20 feet and a weight of about 500 pounds. Primary changes to the X-48C model from the B model, which flew 92 flights at Dryden between 2007 and 2010, were geared to transforming it to an airframe noise-shielding configuration. External modifications included relocating the wingtip winglets inboard next to the engines, effectively turning them into twin tails. The rear deck of the aircraft was extended about two feet. Finally, the project team replaced the X-48B's three 50-pound thrust jet engines with two 89-pound thrust engines. The aircraft had an estimated top speed of about 140 mph and a maximum altitude of 10,000 feet.
"Working closely with NASA, we have been privileged throughout X-48 flight-testing to explore and validate what we believe is a significant breakthrough in the science of flight and this has been a tremendous success for Boeing," said Bob Liebeck, a Boeing senior technical fellow and the company's Blended Wing Body (BWB) Program manager. "We have shown a BWB aircraft, which offers the tremendous promise of significantly greater fuel efficiency and reduced noise, can be controlled as effectively as a conventional tube-and-wing aircraft during takeoffs, landings and other low-speed segments of the flight regime."
"Our goal was to define the low-speed envelope and explore the low-speed handling qualities of the blended wing body class of tailless aircraft, and we have accomplished that," added Mike Kisska, Boeing X-48 project manager.
Because handling qualities of the X-48C were different from those of the X-48B, the project team modified the flight control system software, including flight control limiters to keep the airplane flying within a safe flight envelope. This enabled a stronger and safer prototype flight control system suitable for future full-scale commercial hybrid or blended wing aircraft.
NASA's Aeronautics Research Mission Directorate and Boeing funded the X-48 technology demonstration research effort, which supported NASA's goals of reduced fuel burn, emissions, and noise. The Air Force Research Laboratory in Dayton, Ohio, also was a member of the project team.
X-48 Project Completes Flight Research for Cleaner, Quieter Aircraft
EDWARDS, Calif. -- NASA's remotely piloted X-48C hybrid-wing-body subscale aircraft, which demonstrates technology concepts for cleaner and quieter commercial air travel, completed an eight-month flight research campaign on April 9.
The C model of the X-48 aircraft flew its first flight at Edwards Aug. 7 and its 30th flight brought the productive research project to a close.
"We have accomplished our goals of establishing a ground-to-flight database, and proving the low speed controllability of the concept throughout the flight envelope," said Fay Collier, manager of NASA's Environmentally Responsible Aviation project. "Very quiet and efficient, the hybrid wing body has shown promise for meeting all of NASA's environmental goals for future aircraft designs."
The scale-model aircraft, shaped like a manta ray, was designed by The Boeing Co., built by Cranfield Aerospace Limited of the United Kingdom, and flown in partnership with NASA. The X-48C is a version of NASA's X-48B blended wing body aircraft modified to evaluate the low-speed stability and control of a low-noise version of a notional hybrid-wing-body design. This design features a flattened fuselage with no tail, and engines mounted on top of the fuselage at the rear of the plane. The design stems from concept studies for commercial aircraft that could be flying within 20 years. The studies are under way in NASA's Environmentally Responsible Aviation Project.
"Our team has done what we do best: flight-test a unique aircraft and repeatedly collect data that will be used to design future 'green' airliners," said Heather Maliska, X-48C project manager at NASA's Dryden Flight Research Center in California. "It is bittersweet to see the program come to an end, but we are proud of the safe and extremely successful joint Boeing and NASA flight test program that we have conducted."
The X-48C retained most dimensions of the B model, with a wingspan slightly longer than 20 feet and a weight of about 500 pounds. Primary changes to the X-48C model from the B model, which flew 92 flights at Dryden between 2007 and 2010, were geared to transforming it to an airframe noise-shielding configuration. External modifications included relocating the wingtip winglets inboard next to the engines, effectively turning them into twin tails. The rear deck of the aircraft was extended about two feet. Finally, the project team replaced the X-48B's three 50-pound thrust jet engines with two 89-pound thrust engines. The aircraft had an estimated top speed of about 140 mph and a maximum altitude of 10,000 feet.
"Working closely with NASA, we have been privileged throughout X-48 flight-testing to explore and validate what we believe is a significant breakthrough in the science of flight and this has been a tremendous success for Boeing," said Bob Liebeck, a Boeing senior technical fellow and the company's Blended Wing Body (BWB) Program manager. "We have shown a BWB aircraft, which offers the tremendous promise of significantly greater fuel efficiency and reduced noise, can be controlled as effectively as a conventional tube-and-wing aircraft during takeoffs, landings and other low-speed segments of the flight regime."
"Our goal was to define the low-speed envelope and explore the low-speed handling qualities of the blended wing body class of tailless aircraft, and we have accomplished that," added Mike Kisska, Boeing X-48 project manager.
Because handling qualities of the X-48C were different from those of the X-48B, the project team modified the flight control system software, including flight control limiters to keep the airplane flying within a safe flight envelope. This enabled a stronger and safer prototype flight control system suitable for future full-scale commercial hybrid or blended wing aircraft.
NASA's Aeronautics Research Mission Directorate and Boeing funded the X-48 technology demonstration research effort, which supported NASA's goals of reduced fuel burn, emissions, and noise. The Air Force Research Laboratory in Dayton, Ohio, also was a member of the project team.
Friday, April 19, 2013
Wednesday, April 17, 2013
Tuesday, April 16, 2013
Sunday, April 14, 2013
NASA AND FOREST SERVICE READY FOR 2013 WILDFIRE SEASON WITH NEW IMAGING SENSOR
FROM: NASA
NASA Imaging Sensor Prepares for Western Wildfire Season
WASHINGTON – Airborne imaging technology developed at NASA and transferred to the U.S. Department of Agriculture's Forest Service (USFS) in 2012 is being tested to prepare for this year's wildfire season in the western United States.
The Autonomous Modular Sensor (AMS) is a scanning spectrometer designed to help detect hot-spots, active fires, and smoldering and post-fire conditions. Scientists at NASA's Ames Research Center in Moffett Field, Calif., and USFS engineers installed it on a Cessna Citation aircraft that belongs to the Forest Service. The USFS plans to use it in operational fire imaging and measurement.
The western United States is expected to have continued droughts this year resulting in increased potential for fire outbreaks, according to the National Interagency Fire Center (NIFC) in Boise, Idaho. To help mitigate fire danger, NASA researchers and USFS firefighters are collaborating to improve fire management capabilities.
"NASA technologies in the fields of data communication, aircraft systems, advanced sensing systems and real-time information processing finally have coalesced into the operational use that supports national needs in wildfire management," said Vincent Ambrosia, principal investigator of the Wildfire Research and Applications Partnership project and a senior research scientist at Ames and California State University, Monterey Bay.
Developed by NASA's Airborne Sciences Program, the Autonomous Modular Sensor acquires high-resolution imagery of the Earth's features from its vantage point aboard research aircraft. The sensor transmits nearly real-time data to ground disaster management investigators for analysis.
The sensor has been modified to fly on various crewed and uncrewed platforms, including NASA's Ikhana remotely piloted aircraft, a Predator-B modified to conduct airborne research. Between 2006 and 2010 the AMS flew on the Ikhana and NASA's B-200 King Air to demonstrate sensor capabilities, support national and state emergency requests for wildfire data, and ensure its operational readiness.
Data gathered during those flights was used to develop and test algorithms for scientific programs that monitor changes in environmental conditions, assess global change and respond to natural disasters.
The Autonomous Modular Sensor will be operated daily over wildfires throughout the United States, providing an unprecedented amount of data to the fire research and applications communities. USFS also will use the sensor to support other agency objectives, such as vegetation inventory analysis and water and river mapping.
"I see tremendous opportunity for my agency and other land management agencies to benefit from the application of NASA-developed technology," said Everett Hinkley, national remote sensing program manager with USFS in Arlington, Va. "The AMS expands our current capabilities and offers efficiencies in a number of remote-sensing applications including fire, post-fire and forest health applications."
NASA will continue to support the Forest Service's use of the Autonomous Modular Sensor. Researchers with NASA and other agencies will have access to the data and can request mission use through partnerships.
NASA Imaging Sensor Prepares for Western Wildfire Season
WASHINGTON – Airborne imaging technology developed at NASA and transferred to the U.S. Department of Agriculture's Forest Service (USFS) in 2012 is being tested to prepare for this year's wildfire season in the western United States.
The Autonomous Modular Sensor (AMS) is a scanning spectrometer designed to help detect hot-spots, active fires, and smoldering and post-fire conditions. Scientists at NASA's Ames Research Center in Moffett Field, Calif., and USFS engineers installed it on a Cessna Citation aircraft that belongs to the Forest Service. The USFS plans to use it in operational fire imaging and measurement.
The western United States is expected to have continued droughts this year resulting in increased potential for fire outbreaks, according to the National Interagency Fire Center (NIFC) in Boise, Idaho. To help mitigate fire danger, NASA researchers and USFS firefighters are collaborating to improve fire management capabilities.
"NASA technologies in the fields of data communication, aircraft systems, advanced sensing systems and real-time information processing finally have coalesced into the operational use that supports national needs in wildfire management," said Vincent Ambrosia, principal investigator of the Wildfire Research and Applications Partnership project and a senior research scientist at Ames and California State University, Monterey Bay.
Developed by NASA's Airborne Sciences Program, the Autonomous Modular Sensor acquires high-resolution imagery of the Earth's features from its vantage point aboard research aircraft. The sensor transmits nearly real-time data to ground disaster management investigators for analysis.
The sensor has been modified to fly on various crewed and uncrewed platforms, including NASA's Ikhana remotely piloted aircraft, a Predator-B modified to conduct airborne research. Between 2006 and 2010 the AMS flew on the Ikhana and NASA's B-200 King Air to demonstrate sensor capabilities, support national and state emergency requests for wildfire data, and ensure its operational readiness.
Data gathered during those flights was used to develop and test algorithms for scientific programs that monitor changes in environmental conditions, assess global change and respond to natural disasters.
The Autonomous Modular Sensor will be operated daily over wildfires throughout the United States, providing an unprecedented amount of data to the fire research and applications communities. USFS also will use the sensor to support other agency objectives, such as vegetation inventory analysis and water and river mapping.
"I see tremendous opportunity for my agency and other land management agencies to benefit from the application of NASA-developed technology," said Everett Hinkley, national remote sensing program manager with USFS in Arlington, Va. "The AMS expands our current capabilities and offers efficiencies in a number of remote-sensing applications including fire, post-fire and forest health applications."
NASA will continue to support the Forest Service's use of the Autonomous Modular Sensor. Researchers with NASA and other agencies will have access to the data and can request mission use through partnerships.
Saturday, April 13, 2013
THE ZVEZDA SERVICE MODUCLE ARRAY
FROM: NASA
Space Station Solar Arrays
(3 April 2013) --- This close-up picture of a Zvezda Service Module array, reflecting bright rays of the sun, thus creating an artistic scene, was photographed on April 3 by one of the Expedition 35 crew members as part of an External Survey from International Space Station windows that was recently added to the crew's task list. Image Credit: NASA
Friday, April 12, 2013
Wednesday, April 10, 2013
Tuesday, April 9, 2013
Sunday, April 7, 2013
STAR LIGHT GETS BENT
FROM: NASA
This artist's animation depicts an ultra-dense dead star, called a white dwarf, passing in front of a small red star. As the white dwarf crosses in front, its gravity is so great that it bends and magnifies the light of the red star.
NASA's planet-hunting Kepler space telescope was able to detect this effect, called gravitational lensing, not through direct imaging, but by measuring a strangely subtle dip in the star's brightness.
The red dwarf star is cooler and redder than our yellow sun. Its companion is a white dwarf, the burnt-out core of a star that used to be like our sun. Though the white dwarf is about the same diameter as Earth, 40 times smaller than the red dwarf, it is slightly more massive. The two objects circle around each other, but because the red dwarf is a bit less massive, it technically orbits the white dwarf.
Kepler is designed to look for planets by monitoring the brightness of stars. If planets cross in front of the stars, the starlight will periodically dip. In this case, the passing object turned out to be a white dwarf not a planet. The finding was serendipitous for astronomers because it allowed them to measure the tiny "gravitational lensing" effect of the white dwarf, a rarely observed phenomenon and a test of Einstein's theory of relativity. These data also helped to precisely measure the white dwarf's mass.
Image credit: NASA/JPL-Caltech
Saturday, April 6, 2013
FARTHEST SUPEROVA SO FAR DISCOVERED
FROM: NASA
Hubble Breaks Record in Search for Farthest Supernova
WASHINGTON -- NASA's Hubble Space Telescope has found the farthest supernova so far of the type used to measure cosmic distances. Supernova UDS10Wil, nicknamed SN Wilson after American President Woodrow Wilson, exploded more than 10 billion years ago.
SN Wilson belongs to a special class called Type Ia supernovae. These bright beacons are prized by astronomers because they provide a consistent level of brightness that can be used to measure the expansion of space. They also yield clues to the nature of dark energy, the mysterious force accelerating the rate of expansion.
"This new distance record holder opens a window into the early universe, offering important new insights into how these stars explode," said David O. Jones of Johns Hopkins University in Baltimore, Md., an astronomer and lead author on the paper detailing the discovery. "We can test theories about how reliable these detonations are for understanding the evolution of the universe and its expansion."
The discovery was part of a three-year Hubble program, begun in 2010, to survey faraway Type Ia supernovae and determine whether they have changed during the 13.8 billion years since the explosive birth of the universe. Astronomers took advantage of the sharpness and versatility of Hubble's Wide Field Camera 3 to search for supernovae in near-infrared light and verify their distance with spectroscopy.
Leading the work is Adam Riess of the Space Telescope Science Institute in Baltimore, Md., and Johns Hopkins University.
Finding remote supernovae provides a powerful method to measure the universe's accelerating expansion. So far, Riess's team has uncovered more than 100 supernovae of all types and distances, looking back in time from 2.4 billion years to more than 10 billion years. Of those new discoveries, the team has identified eight Type Ia supernovae, including SN Wilson, that exploded more than 9 billion years ago.
"The Type Ia supernovae give us the most precise yardstick ever built, but we're not quite sure if it always measures exactly a yard," said team member Steve Rodney of Johns Hopkins University. "The more we understand these supernovae, the more precise our cosmic yardstick will become."
Although SN Wilson is only 4 percent more distant than the previous record holder, it pushes roughly 350 million years farther back in time. A separate team led by David Rubin of the U.S. Energy Department's Lawrence Berkeley National Laboratory in California announced the previous record just three months ago.
Astronomers still have much to learn about the nature of dark energy and how Type Ia supernovae explode.
By finding Type Ia supernovae so early in the universe, astronomers can distinguish between two competing explosion models. In one model the explosion is caused by a merger between two white dwarfs. In another model, a white dwarf gradually feeds off its partner, a normal star, and explodes when it accretes too much mass.
The team's preliminary evidence shows a sharp decline in the rate of Type Ia supernova blasts between roughly 7.5 billion years ago and more than 10 billion years ago. The steep drop-off favors the merger of two white dwarfs because it predicts that most stars in the early universe are too young to become Type Ia supernovae.
"If supernovae were popcorn, the question is how long before they start popping?" Riess said. "You may have different theories about what is going on in the kernel. If you see when the first kernels popped and how often they popped, it tells you something important about the process of popping corn."
Knowing the type of trigger for Type Ia supernovae also will show how quickly the universe enriched itself with heavier elements such as iron. These exploding stars produce about half of the iron in the universe, the raw material for building planets, and life.
The team's results have been accepted for publication in an upcoming issue of The Astrophysical Journal.
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. The Association of Universities for Research in Astronomy Inc., in Washington operates STScI.
Hubble Breaks Record in Search for Farthest Supernova
WASHINGTON -- NASA's Hubble Space Telescope has found the farthest supernova so far of the type used to measure cosmic distances. Supernova UDS10Wil, nicknamed SN Wilson after American President Woodrow Wilson, exploded more than 10 billion years ago.
SN Wilson belongs to a special class called Type Ia supernovae. These bright beacons are prized by astronomers because they provide a consistent level of brightness that can be used to measure the expansion of space. They also yield clues to the nature of dark energy, the mysterious force accelerating the rate of expansion.
"This new distance record holder opens a window into the early universe, offering important new insights into how these stars explode," said David O. Jones of Johns Hopkins University in Baltimore, Md., an astronomer and lead author on the paper detailing the discovery. "We can test theories about how reliable these detonations are for understanding the evolution of the universe and its expansion."
The discovery was part of a three-year Hubble program, begun in 2010, to survey faraway Type Ia supernovae and determine whether they have changed during the 13.8 billion years since the explosive birth of the universe. Astronomers took advantage of the sharpness and versatility of Hubble's Wide Field Camera 3 to search for supernovae in near-infrared light and verify their distance with spectroscopy.
Leading the work is Adam Riess of the Space Telescope Science Institute in Baltimore, Md., and Johns Hopkins University.
Finding remote supernovae provides a powerful method to measure the universe's accelerating expansion. So far, Riess's team has uncovered more than 100 supernovae of all types and distances, looking back in time from 2.4 billion years to more than 10 billion years. Of those new discoveries, the team has identified eight Type Ia supernovae, including SN Wilson, that exploded more than 9 billion years ago.
"The Type Ia supernovae give us the most precise yardstick ever built, but we're not quite sure if it always measures exactly a yard," said team member Steve Rodney of Johns Hopkins University. "The more we understand these supernovae, the more precise our cosmic yardstick will become."
Although SN Wilson is only 4 percent more distant than the previous record holder, it pushes roughly 350 million years farther back in time. A separate team led by David Rubin of the U.S. Energy Department's Lawrence Berkeley National Laboratory in California announced the previous record just three months ago.
Astronomers still have much to learn about the nature of dark energy and how Type Ia supernovae explode.
By finding Type Ia supernovae so early in the universe, astronomers can distinguish between two competing explosion models. In one model the explosion is caused by a merger between two white dwarfs. In another model, a white dwarf gradually feeds off its partner, a normal star, and explodes when it accretes too much mass.
The team's preliminary evidence shows a sharp decline in the rate of Type Ia supernova blasts between roughly 7.5 billion years ago and more than 10 billion years ago. The steep drop-off favors the merger of two white dwarfs because it predicts that most stars in the early universe are too young to become Type Ia supernovae.
"If supernovae were popcorn, the question is how long before they start popping?" Riess said. "You may have different theories about what is going on in the kernel. If you see when the first kernels popped and how often they popped, it tells you something important about the process of popping corn."
Knowing the type of trigger for Type Ia supernovae also will show how quickly the universe enriched itself with heavier elements such as iron. These exploding stars produce about half of the iron in the universe, the raw material for building planets, and life.
The team's results have been accepted for publication in an upcoming issue of The Astrophysical Journal.
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. The Association of Universities for Research in Astronomy Inc., in Washington operates STScI.
Friday, April 5, 2013
Subscribe to:
Posts (Atom)