As NASA missions explore our solar system and search for new worlds, they are finding water in surprising places. Water is but one piece of our search for habitable planets and life beyond Earth, yet it links many seemingly unrelated worlds in surprising ways. Perhaps the most surprising water worlds are the five icy moons of Jupiter and Saturn that show strong evidence of oceans beneath their surfaces: Ganymede, Europa and Callisto at Jupiter, and Enceladus and Titan at Saturn. Scientists using NASA's Hubble Space Telescope recently provided powerful evidence that Ganymede has a saltwater, sub-surface ocean, likely sandwiched between two layers of ice. In this artist’s concept, the moon Ganymede orbits the giant planet Jupiter. The Hubble Space Telescope observed aurorae on the moon generated by Ganymede’s magnetic fields. A saline ocean under the moon’s icy crust best explains shifting in the auroral belts measured by Hubble. More: The Solar System and Beyond is Awash in Water Image Credit: NASA/ESA.
Showing posts with label HUBBLE SPACE TELESCOPE. Show all posts
Showing posts with label HUBBLE SPACE TELESCOPE. Show all posts
Sunday, May 31, 2015
WHERE ARE THE WORLDS WITH WATER?
FROM: NASA
As NASA missions explore our solar system and search for new worlds, they are finding water in surprising places. Water is but one piece of our search for habitable planets and life beyond Earth, yet it links many seemingly unrelated worlds in surprising ways. Perhaps the most surprising water worlds are the five icy moons of Jupiter and Saturn that show strong evidence of oceans beneath their surfaces: Ganymede, Europa and Callisto at Jupiter, and Enceladus and Titan at Saturn. Scientists using NASA's Hubble Space Telescope recently provided powerful evidence that Ganymede has a saltwater, sub-surface ocean, likely sandwiched between two layers of ice. In this artist’s concept, the moon Ganymede orbits the giant planet Jupiter. The Hubble Space Telescope observed aurorae on the moon generated by Ganymede’s magnetic fields. A saline ocean under the moon’s icy crust best explains shifting in the auroral belts measured by Hubble. More: The Solar System and Beyond is Awash in Water Image Credit: NASA/ESA.
As NASA missions explore our solar system and search for new worlds, they are finding water in surprising places. Water is but one piece of our search for habitable planets and life beyond Earth, yet it links many seemingly unrelated worlds in surprising ways. Perhaps the most surprising water worlds are the five icy moons of Jupiter and Saturn that show strong evidence of oceans beneath their surfaces: Ganymede, Europa and Callisto at Jupiter, and Enceladus and Titan at Saturn. Scientists using NASA's Hubble Space Telescope recently provided powerful evidence that Ganymede has a saltwater, sub-surface ocean, likely sandwiched between two layers of ice. In this artist’s concept, the moon Ganymede orbits the giant planet Jupiter. The Hubble Space Telescope observed aurorae on the moon generated by Ganymede’s magnetic fields. A saline ocean under the moon’s icy crust best explains shifting in the auroral belts measured by Hubble. More: The Solar System and Beyond is Awash in Water Image Credit: NASA/ESA.
Sunday, May 3, 2015
SPIRAL GALAXY NGC 5023
FROM: NASA
This NASA/ESA Hubble Space Telescope image shows an edge-on view of the spiral galaxy NGC 5023. Due to its orientation we cannot appreciate its spiral arms, but we can admire the elegant profile of its disk.
The galaxy lies over 30 million light-years away from us. NGC 5023 is part of the M51 group of galaxies. The brightest galaxy in this group is Messier 51, the Whirlpool Galaxy, which has been captured by Hubble many times. NGC 5023 is less fond of the limelight and seems rather unsociable in comparison — it is relatively isolated from the other galaxies in the group. Astronomers are particularly interested in the vertical structure of disks like these. By analyzing the structure above and below the central plane of the galaxy they can make progress in understanding galaxy evolution. Astronomers are able to analyze the distribution of different types of stars within the galaxy and their properties, in particular how well evolved they are on the Hertzsprung–Russell Diagram — a scatter graph of stars that shows their evolution. NGC 5023 is one of six edge-on spiral galaxies observed as part of a study using Hubble’s Advanced Camera for Surveys. They study this vertical distribution and find a trend which suggests that heating of the disc plays an important role in producing the stars seen away from the plane of the galaxy. In fact, NGC 5023 is pretty popular when it comes to astronomers, despite its unsociable behavior.
The galaxy is also one of 14 disk galaxies that are part of the GHOSTS survey — a survey which uses Hubble data to study galaxy halos, outer disks and star clusters. It is the largest study to date of star populations in the outskirts of disk galaxies. The incredible sharp sight of Hubble has allowed scientist to count more than 30,000 individual bright stars in this image. This is only a small fraction of the several billion stars that this galaxy contains, but the others are too faint to detect individually even with Hubble. European Space Agency Credit-ESA-NASA
This NASA/ESA Hubble Space Telescope image shows an edge-on view of the spiral galaxy NGC 5023. Due to its orientation we cannot appreciate its spiral arms, but we can admire the elegant profile of its disk.
The galaxy lies over 30 million light-years away from us. NGC 5023 is part of the M51 group of galaxies. The brightest galaxy in this group is Messier 51, the Whirlpool Galaxy, which has been captured by Hubble many times. NGC 5023 is less fond of the limelight and seems rather unsociable in comparison — it is relatively isolated from the other galaxies in the group. Astronomers are particularly interested in the vertical structure of disks like these. By analyzing the structure above and below the central plane of the galaxy they can make progress in understanding galaxy evolution. Astronomers are able to analyze the distribution of different types of stars within the galaxy and their properties, in particular how well evolved they are on the Hertzsprung–Russell Diagram — a scatter graph of stars that shows their evolution. NGC 5023 is one of six edge-on spiral galaxies observed as part of a study using Hubble’s Advanced Camera for Surveys. They study this vertical distribution and find a trend which suggests that heating of the disc plays an important role in producing the stars seen away from the plane of the galaxy. In fact, NGC 5023 is pretty popular when it comes to astronomers, despite its unsociable behavior.
The galaxy is also one of 14 disk galaxies that are part of the GHOSTS survey — a survey which uses Hubble data to study galaxy halos, outer disks and star clusters. It is the largest study to date of star populations in the outskirts of disk galaxies. The incredible sharp sight of Hubble has allowed scientist to count more than 30,000 individual bright stars in this image. This is only a small fraction of the several billion stars that this galaxy contains, but the others are too faint to detect individually even with Hubble. European Space Agency Credit-ESA-NASA
Sunday, June 29, 2014
A LOOK AT GALAXY NGC 4485
FROM: NASA
This image from NASA/ESA's Hubble Space Telescope shows galaxy NGC 4485 in the constellation of Canes Venatici (The Hunting Dogs). The galaxy is irregular in shape, but it hasn’t always been so. Part of NGC 4485 has been dragged towards a second galaxy, named NGC 4490 — which lies out of frame to the bottom right of this image. Between them, these two galaxies make up a galaxy pair called Arp 269. Their interactions have warped them both, turning them from spiral galaxies into irregular ones. NGC 4485 is the smaller galaxy in this pair, which provides a fantastic real-world example for astronomers to compare to their computer models of galactic collisions. The most intense interaction between these two galaxies is all but over; they have made their closest approach and are now separating. The trail of bright stars and knotty orange clumps that we see here extending out from NGC 4485 is all that connects them — a trail that spans some 24 000 light-years. Many of the stars in this connecting trail could never have existed without the galaxies’ fleeting romance. When galaxies interact hydrogen gas is shared between them, triggering intense bursts of star formation. The orange knots of light in this image are examples of such regions, clouded with gas and dust. European Space Agency Credit: ESA/Hubble & NASA, Acknowledgement: Kathy van Pelt.
Sunday, April 27, 2014
THE MASSIVE EL GORDO GALAXY CLUSTER
FROM: NASA
NASA's Hubble Space Telescope has weighed the largest known galaxy cluster in the distant universe, catalogued as ACT-CL J0102-4915, and found it definitely lives up to its nickname -- El Gordo (Spanish for "the fat one"). By measuring how much the cluster's gravity warps images of galaxies in the distant background, a team of astronomers has calculated the cluster's mass to be as much as 3 million billion times the mass of our sun. Hubble data show the galaxy cluster, which is 9.7 billion light-years away from Earth, is roughly 43 percent more massive than earlier estimates. The team used Hubble to measure how strongly the mass of the cluster warped space. Hubble's high resolution allowed measurements of so-called "weak lensing," where the cluster's immense gravity subtly distorts space like a funhouse mirror and warps images of background galaxies. The greater the warping, the more mass is locked up in the cluster. Credit-NASA-ESA.
NASA's Hubble Space Telescope has weighed the largest known galaxy cluster in the distant universe, catalogued as ACT-CL J0102-4915, and found it definitely lives up to its nickname -- El Gordo (Spanish for "the fat one"). By measuring how much the cluster's gravity warps images of galaxies in the distant background, a team of astronomers has calculated the cluster's mass to be as much as 3 million billion times the mass of our sun. Hubble data show the galaxy cluster, which is 9.7 billion light-years away from Earth, is roughly 43 percent more massive than earlier estimates. The team used Hubble to measure how strongly the mass of the cluster warped space. Hubble's high resolution allowed measurements of so-called "weak lensing," where the cluster's immense gravity subtly distorts space like a funhouse mirror and warps images of background galaxies. The greater the warping, the more mass is locked up in the cluster. Credit-NASA-ESA.
Sunday, April 6, 2014
CELEBRATING HUBBLE ON 24TH ANNIVERSARY OF LAUNCH
FROM: NASA
In celebration of the 24th anniversary of the launch of NASA's Hubble Space Telescope, astronomers have captured infrared-light images of a churning region of star birth 6,400 light-years away. This colorful Hubble Space Telescope mosaic of a small portion of the Monkey Head Nebula unveils a collection of carved knots of gas and dust silhouetted against glowing gas. The cloud is sculpted by ultraviolet light eating into the cool hydrogen gas. Image Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA).
In celebration of the 24th anniversary of the launch of NASA's Hubble Space Telescope, astronomers have captured infrared-light images of a churning region of star birth 6,400 light-years away. This colorful Hubble Space Telescope mosaic of a small portion of the Monkey Head Nebula unveils a collection of carved knots of gas and dust silhouetted against glowing gas. The cloud is sculpted by ultraviolet light eating into the cool hydrogen gas. Image Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA).
Sunday, June 23, 2013
PLANET FAR FROM ITS STAR
FROM: NASA
NASA'S Hubble Uncovers Evidence of Farthest Planet Forming From Its Star
WASHINGTON -- Astronomers using NASA's Hubble Space Telescope have found compelling evidence of a planet forming 7.5 billion miles away from its star, a finding that may challenge current theories about planet formation.
Of the almost 900 planets outside our solar system that have been confirmed to date, this is the first to be found at such a great distance from its star. The suspected planet is orbiting the diminutive red dwarf TW Hydrae, a popular astronomy target located 176 light-years away from Earth in the constellation Hydra the Sea Serpent.
Hubble's keen vision detected a mysterious gap in a vast protoplanetary disk of gas and dust swirling around TW Hydrae. The gap is 1.9 billion miles wide and the disk is 41 billion miles wide. The gap's presence likely was caused by a growing, unseen planet that is gravitationally sweeping up material and carving out a lane in the disk, like a snow plow.
The planet is estimated to be relatively small, at 6 to 28 times more massive than Earth. Its wide orbit means it is moving slowly around its host star. If the suspected planet were orbiting in our solar system, it would be roughly twice Pluto's distance from the sun.
Planets are thought to form over tens of millions of years. The buildup is slow, but persistent as a budding planet picks up dust, rocks, and gas from the protoplanetary disk. A planet 7.5 billion miles from its star should take more than 200 times longer to form than Jupiter did at its distance from the sun because of its much slower orbital speed and the deficiency of material in the disk. Jupiter is 500 million miles from the sun and it formed in about 10 million years.
TW Hydrae is only 8 million years old, making it an unlikely star to host a planet, according to this theory. There has not been enough time for a planet to grow through the slow accumulation of smaller debris. Complicating the story further is that TW Hydrae is only 55 percent as massive as our sun.
"It's so intriguing to see a system like this," said John Debes of the Space Telescope Science Institute in Baltimore, Md. Debes leads a research team that identified the gap. "This is the lowest-mass star for which we've observed a gap so far out."
An alternative planet-formation theory suggests that a piece of the disk becomes gravitationally unstable and collapses on itself. In this scenario, a planet could form more quickly, in just a few thousand years.
"If we can actually confirm that there's a planet there, we can connect its characteristics to measurements of the gap properties," Debes said. "That might add to planet formation theories as to how you can actually form a planet very far out."
The TW Hydrae disk also lacks large dust grains in its outer regions. Observations from the Atacama Large Millimeter Array in Chile show dust grains roughly the size of a grain of sand are not present beyond about 5.5 billion miles from the star, just short of the gap.
"Typically, you need pebbles before you can have a planet. So, if there is a planet and there is no dust larger than a grain of sand farther out, that would be a huge challenge to traditional planet formation models," Debes said.
The team used Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) to observe the star in near-infrared light. The researchers then compared the NICMOS images with archival Hubble data and optical and spectroscopic observations from Hubble's Space Telescope Imaging Spectrograph (STIS). Debes said researchers see the gap at all wavelengths, which indicates it is a structural feature and not an illusion caused by the instruments or scattered light.
The team's paper will appear online June 14 in The Astrophysical Journal.
NASA'S Hubble Uncovers Evidence of Farthest Planet Forming From Its Star
WASHINGTON -- Astronomers using NASA's Hubble Space Telescope have found compelling evidence of a planet forming 7.5 billion miles away from its star, a finding that may challenge current theories about planet formation.
Of the almost 900 planets outside our solar system that have been confirmed to date, this is the first to be found at such a great distance from its star. The suspected planet is orbiting the diminutive red dwarf TW Hydrae, a popular astronomy target located 176 light-years away from Earth in the constellation Hydra the Sea Serpent.
Hubble's keen vision detected a mysterious gap in a vast protoplanetary disk of gas and dust swirling around TW Hydrae. The gap is 1.9 billion miles wide and the disk is 41 billion miles wide. The gap's presence likely was caused by a growing, unseen planet that is gravitationally sweeping up material and carving out a lane in the disk, like a snow plow.
The planet is estimated to be relatively small, at 6 to 28 times more massive than Earth. Its wide orbit means it is moving slowly around its host star. If the suspected planet were orbiting in our solar system, it would be roughly twice Pluto's distance from the sun.
Planets are thought to form over tens of millions of years. The buildup is slow, but persistent as a budding planet picks up dust, rocks, and gas from the protoplanetary disk. A planet 7.5 billion miles from its star should take more than 200 times longer to form than Jupiter did at its distance from the sun because of its much slower orbital speed and the deficiency of material in the disk. Jupiter is 500 million miles from the sun and it formed in about 10 million years.
TW Hydrae is only 8 million years old, making it an unlikely star to host a planet, according to this theory. There has not been enough time for a planet to grow through the slow accumulation of smaller debris. Complicating the story further is that TW Hydrae is only 55 percent as massive as our sun.
"It's so intriguing to see a system like this," said John Debes of the Space Telescope Science Institute in Baltimore, Md. Debes leads a research team that identified the gap. "This is the lowest-mass star for which we've observed a gap so far out."
An alternative planet-formation theory suggests that a piece of the disk becomes gravitationally unstable and collapses on itself. In this scenario, a planet could form more quickly, in just a few thousand years.
"If we can actually confirm that there's a planet there, we can connect its characteristics to measurements of the gap properties," Debes said. "That might add to planet formation theories as to how you can actually form a planet very far out."
The TW Hydrae disk also lacks large dust grains in its outer regions. Observations from the Atacama Large Millimeter Array in Chile show dust grains roughly the size of a grain of sand are not present beyond about 5.5 billion miles from the star, just short of the gap.
"Typically, you need pebbles before you can have a planet. So, if there is a planet and there is no dust larger than a grain of sand farther out, that would be a huge challenge to traditional planet formation models," Debes said.
The team used Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) to observe the star in near-infrared light. The researchers then compared the NICMOS images with archival Hubble data and optical and spectroscopic observations from Hubble's Space Telescope Imaging Spectrograph (STIS). Debes said researchers see the gap at all wavelengths, which indicates it is a structural feature and not an illusion caused by the instruments or scattered light.
The team's paper will appear online June 14 in The Astrophysical Journal.
Saturday, May 18, 2013
IMMENSE POWER GENERATED BY SUPERMASSIVE BLACK HOLE
FROM: NASA
This composite image of a galaxy illustrates how the intense gravity of a supermassive black hole can be tapped to generate immense power. The image contains X-ray data from NASA's Chandra X-ray Observatory (blue), optical light obtained with the Hubble Space Telescope (gold) and radio waves from the NSF’s Very Large Array (pink).
This multi-wavelength view shows 4C+29.30, a galaxy located some 850 million light years from Earth. The radio emission comes from two jets of particles that are speeding at millions of miles per hour away from a supermassive black hole at the center of the galaxy. The estimated mass of the black hole is about 100 million times the mass of our Sun. The ends of the jets show larger areas of radio emission located outside the galaxy.
The X-ray data show a different aspect of this galaxy, tracing the location of hot gas. The bright X-rays in the center of the image mark a pool of million-degree gas around the black hole. Some of this material may eventually be consumed by the black hole, and the magnetized, whirlpool of gas near the black hole could in turn, trigger more output to the radio jet.
Most of the low-energy X-rays from the vicinity of the black hole are absorbed by dust and gas, probably in the shape of a giant doughnut around the black hole. This doughnut, or torus blocks all the optical light produced near the black hole, so astronomers refer to this type of source as a hidden or buried black hole. The optical light seen in the image is from the stars in the galaxy.
The bright spots in X-ray and radio emission on the outer edges of the galaxy, near the ends of the jets, are caused by extremely high energy electrons following curved paths around magnetic field lines. They show where a jet generated by the black hole has plowed into clumps of material in the galaxy (mouse over the image for the location of these bright spots). Much of the energy of the jet goes into heating the gas in these clumps, and some of it goes into dragging cool gas along the direction of the jet. Both the heating and the dragging can limit the fuel supply for the supermassive black hole, leading to temporary starvation and stopping its growth. This feedback process is thought to cause the observed correlation between the mass of the supermassive black hole and the combined mass of the stars in the central region or bulge or a galaxy.
These results were reported in two different papers. The first, which concentrated on the effects of the jets on the galaxy, is available online and was published in the May 10, 2012 issue of The Astrophysical Journal. It is led by Aneta Siemiginowska from the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, MA and the co-authors are Łukasz Stawarz, from the Institute of Space and Astronautical Science in Yoshinodai, Japan; Teddy Cheung from the National Academy of Sciences in Washington, DC; Thomas Aldcroft from CfA; Jill Bechtold from University of Arizona in Tucson, AZ; Douglas Burke from CfA; Daniel Evans from CfA; Joanna Holt from Leiden University in Leiden, The Netherlands; Marek Jamrozy from Jagiellonian University in Krakow, Poland; and Giulia Migliori from CfA. The second, which concentrated on the supermassive black hole, is available online and was published in the October 20, 2012 issue of The Astrophysical Journal. It is led by Malgorzata Sobolewska from CfA, and the co-authors are Aneta Siemiginowska, Giulia Migliori, Łukasz Stawarz, Marek Jamrozy, Daniel Evans, and Teddy Cheung.
NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
Credits: X-ray: NASA/CXC/SAO/A. Siemiginowska et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA
Saturday, April 6, 2013
FARTHEST SUPEROVA SO FAR DISCOVERED
FROM: NASA
Hubble Breaks Record in Search for Farthest Supernova
WASHINGTON -- NASA's Hubble Space Telescope has found the farthest supernova so far of the type used to measure cosmic distances. Supernova UDS10Wil, nicknamed SN Wilson after American President Woodrow Wilson, exploded more than 10 billion years ago.
SN Wilson belongs to a special class called Type Ia supernovae. These bright beacons are prized by astronomers because they provide a consistent level of brightness that can be used to measure the expansion of space. They also yield clues to the nature of dark energy, the mysterious force accelerating the rate of expansion.
"This new distance record holder opens a window into the early universe, offering important new insights into how these stars explode," said David O. Jones of Johns Hopkins University in Baltimore, Md., an astronomer and lead author on the paper detailing the discovery. "We can test theories about how reliable these detonations are for understanding the evolution of the universe and its expansion."
The discovery was part of a three-year Hubble program, begun in 2010, to survey faraway Type Ia supernovae and determine whether they have changed during the 13.8 billion years since the explosive birth of the universe. Astronomers took advantage of the sharpness and versatility of Hubble's Wide Field Camera 3 to search for supernovae in near-infrared light and verify their distance with spectroscopy.
Leading the work is Adam Riess of the Space Telescope Science Institute in Baltimore, Md., and Johns Hopkins University.
Finding remote supernovae provides a powerful method to measure the universe's accelerating expansion. So far, Riess's team has uncovered more than 100 supernovae of all types and distances, looking back in time from 2.4 billion years to more than 10 billion years. Of those new discoveries, the team has identified eight Type Ia supernovae, including SN Wilson, that exploded more than 9 billion years ago.
"The Type Ia supernovae give us the most precise yardstick ever built, but we're not quite sure if it always measures exactly a yard," said team member Steve Rodney of Johns Hopkins University. "The more we understand these supernovae, the more precise our cosmic yardstick will become."
Although SN Wilson is only 4 percent more distant than the previous record holder, it pushes roughly 350 million years farther back in time. A separate team led by David Rubin of the U.S. Energy Department's Lawrence Berkeley National Laboratory in California announced the previous record just three months ago.
Astronomers still have much to learn about the nature of dark energy and how Type Ia supernovae explode.
By finding Type Ia supernovae so early in the universe, astronomers can distinguish between two competing explosion models. In one model the explosion is caused by a merger between two white dwarfs. In another model, a white dwarf gradually feeds off its partner, a normal star, and explodes when it accretes too much mass.
The team's preliminary evidence shows a sharp decline in the rate of Type Ia supernova blasts between roughly 7.5 billion years ago and more than 10 billion years ago. The steep drop-off favors the merger of two white dwarfs because it predicts that most stars in the early universe are too young to become Type Ia supernovae.
"If supernovae were popcorn, the question is how long before they start popping?" Riess said. "You may have different theories about what is going on in the kernel. If you see when the first kernels popped and how often they popped, it tells you something important about the process of popping corn."
Knowing the type of trigger for Type Ia supernovae also will show how quickly the universe enriched itself with heavier elements such as iron. These exploding stars produce about half of the iron in the universe, the raw material for building planets, and life.
The team's results have been accepted for publication in an upcoming issue of The Astrophysical Journal.
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. The Association of Universities for Research in Astronomy Inc., in Washington operates STScI.
Hubble Breaks Record in Search for Farthest Supernova
WASHINGTON -- NASA's Hubble Space Telescope has found the farthest supernova so far of the type used to measure cosmic distances. Supernova UDS10Wil, nicknamed SN Wilson after American President Woodrow Wilson, exploded more than 10 billion years ago.
SN Wilson belongs to a special class called Type Ia supernovae. These bright beacons are prized by astronomers because they provide a consistent level of brightness that can be used to measure the expansion of space. They also yield clues to the nature of dark energy, the mysterious force accelerating the rate of expansion.
"This new distance record holder opens a window into the early universe, offering important new insights into how these stars explode," said David O. Jones of Johns Hopkins University in Baltimore, Md., an astronomer and lead author on the paper detailing the discovery. "We can test theories about how reliable these detonations are for understanding the evolution of the universe and its expansion."
The discovery was part of a three-year Hubble program, begun in 2010, to survey faraway Type Ia supernovae and determine whether they have changed during the 13.8 billion years since the explosive birth of the universe. Astronomers took advantage of the sharpness and versatility of Hubble's Wide Field Camera 3 to search for supernovae in near-infrared light and verify their distance with spectroscopy.
Leading the work is Adam Riess of the Space Telescope Science Institute in Baltimore, Md., and Johns Hopkins University.
Finding remote supernovae provides a powerful method to measure the universe's accelerating expansion. So far, Riess's team has uncovered more than 100 supernovae of all types and distances, looking back in time from 2.4 billion years to more than 10 billion years. Of those new discoveries, the team has identified eight Type Ia supernovae, including SN Wilson, that exploded more than 9 billion years ago.
"The Type Ia supernovae give us the most precise yardstick ever built, but we're not quite sure if it always measures exactly a yard," said team member Steve Rodney of Johns Hopkins University. "The more we understand these supernovae, the more precise our cosmic yardstick will become."
Although SN Wilson is only 4 percent more distant than the previous record holder, it pushes roughly 350 million years farther back in time. A separate team led by David Rubin of the U.S. Energy Department's Lawrence Berkeley National Laboratory in California announced the previous record just three months ago.
Astronomers still have much to learn about the nature of dark energy and how Type Ia supernovae explode.
By finding Type Ia supernovae so early in the universe, astronomers can distinguish between two competing explosion models. In one model the explosion is caused by a merger between two white dwarfs. In another model, a white dwarf gradually feeds off its partner, a normal star, and explodes when it accretes too much mass.
The team's preliminary evidence shows a sharp decline in the rate of Type Ia supernova blasts between roughly 7.5 billion years ago and more than 10 billion years ago. The steep drop-off favors the merger of two white dwarfs because it predicts that most stars in the early universe are too young to become Type Ia supernovae.
"If supernovae were popcorn, the question is how long before they start popping?" Riess said. "You may have different theories about what is going on in the kernel. If you see when the first kernels popped and how often they popped, it tells you something important about the process of popping corn."
Knowing the type of trigger for Type Ia supernovae also will show how quickly the universe enriched itself with heavier elements such as iron. These exploding stars produce about half of the iron in the universe, the raw material for building planets, and life.
The team's results have been accepted for publication in an upcoming issue of The Astrophysical Journal.
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. The Association of Universities for Research in Astronomy Inc., in Washington operates STScI.
Sunday, November 11, 2012
COLLISION OF A GALACTIC PROPORTION
FROM: NASASpacecraft Image Mashup Shows Galactic Collision
This new composite image from the Chandra X-ray Observatory, the Hubble Space Telescope, and the Spitzer Space Telescope shows two colliding galaxies more than a 100 million years after they first impacted each other. The continuing collision of the Antennae galaxies, located about 62 million light years from Earth, has triggered the formation of millions of stars in clouds of dusts and gas
This new composite image from the Chandra X-ray Observatory, the Hubble Space Telescope, and the Spitzer Space Telescope shows two colliding galaxies more than a 100 million years after they first impacted each other. The continuing collision of the Antennae galaxies, located about 62 million light years from Earth, has triggered the formation of millions of stars in clouds of dusts and gas
Friday, June 1, 2012
HUBBLE OBSERVES GALAXY 4980
FROM: U.S. DEPARTMENT OF DEFENSE ARMED WITH SCIENCE
Written on MAY 27, 2012 AT 7:10 AM by JTOZER
A Spiral Galaxy in Hydra
This image from the NASA Hubble Space Telescope shows NGC 4980, a spiral galaxy in the southern constellation of Hydra. The shape of NGC 4980 appears slightly deformed, something which is often a sign of recent tidal interactions with another galaxy. In this galaxy’s case, however, this appears not to be the case as there are no other galaxies in its immediate vicinity.
The image was produced as part of a research program into the nature of galactic bulges, the bright, dense, elliptical centers of galaxies. Classical bulges are relatively disordered, with stars orbiting the galactic center in all directions. In contrast, in galaxies with so-called pseudobulges, or disc-type bulges, the movement of the spiral arms is preserved right to the center of the galaxy.
Although the spiral structure is relatively subtle in this image, scientists have shown that NGC 4980 has a disc-type bulge, and its rotating spiral structure extends to the very center of the galaxy.
A galaxies’ bright arms are the location of new star formation in spiral galaxies, and NGC 4980 is no exception. The galaxy’s arms are traced out by blue pockets of extremely hot newborn stars are visible across much of its disc. This sets it apart from the reddish galaxies visible in the background, which are distant elliptical galaxies made up of much older, and hence redder, stars.
This image is composed of exposures taken in visible and infrared light by Hubble’s Advanced Camera for Surveys. The image is approximately 3.3 by 1.5 arcminutes in size.
Sunday, April 15, 2012
GALACTIC COLLISION
FROM: NASA
Using a combination of powerful observatories in space and on the ground, astronomers have observed a violent collision between two galaxy clusters in which so-called normal matter has been wrenched apart from dark matter through a violent collision between two galaxy clusters.
Finding another system that is further along in its evolution than the Bullet Cluster gives scientists valuable insight into a different phase of how galaxy clusters -- the largest known objects held together by gravity -- grow and change after major collisions.
Researchers used observations from NASA's Chandra X-ray Observatory and Hubble Space Telescope as well as the Keck, Subaru and Kitt Peak Mayall telescopes to show that hot, X-ray bright gas in the Musket Ball Cluster has been clearly separated from dark matter and galaxies.
In this composite image, the hot gas observed with Chandra is colored red, and the galaxies in the optical image from Hubble appear as mostly white and yellow. The location of the majority of the matter in the cluster (dominated by dark matter) is colored blue. When the red and the blue regions overlap, the result is purple as seen in the image. The matter distribution is determined by using data from Subaru, Hubble and the Mayall telescope that reveal the effects of gravitational lensing, an effect predicted by Einstein where large masses can distort the light from distant objects.
In addition to the Bullet Cluster, five other similar examples of merging clusters with separation between normal and dark matter and varying levels of complexity, have previously been found. In these six systems, the collision is estimated to have occurred between 170 million and 250 million years earlier.
In the Musket Ball Cluster, the system is observed about 700 million years after the collision. Taking into account the uncertainties in the age estimate, the merger that has formed the Musket Ball Cluster is two to five times further along than in previously observed systems. Also, the relative speed of the two clusters that collided to form the Musket Ball cluster was lower than most of the other Bullet Cluster-like objects.
The special environment of galaxy clusters, including the effects of frequent collisions with other clusters or groups of galaxies and the presence of large amounts of hot, intergalactic gas, is likely to play an important role in the evolution of their member galaxies. However, it is still unclear whether cluster mergers trigger star formation, suppress it, or have little immediate effect. The Musket Ball Cluster holds promise for deciding between these alternatives.
The Musket Ball Cluster also allows an independent study of whether dark matter can interact with itself. This information is important for narrowing down the type of particle that may be responsible for dark matter. No evidence is reported for self-interaction in the Musket Ball Cluster, consistent with the results for the Bullet Cluster and the other similar clusters.
The Musket Ball Cluster is located about 5.2 billion light years away from Earth. A paper describing these results was led by Will Dawson from University of California, Davis and was published in the March 10, 2012 issue of The Astrophysical Journal Letters. The other co-authors were David Wittman, M. James Jee and Perry Gee from UC Davis, Jack Hughes from Rutgers University in NJ, J. Anthony Tyson, Samuel Schmidt, Paul Thorman and Marusa Bradac from UC Davis, Satoshi Miyazaki from the Graduate University for Advanced Studies (GUAS) in Tokyo, Japan, Brian Lemaux from UC Davis, Yousuke Utsumi from GUAS and Vera Margoniner from California State University, Sacramento.
NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
Monday, April 2, 2012
SPACESHIP OF STARS?
The NASA/ESA Hubble Space Telescope has spotted the "UFO Galaxy." NGC 2683 is a spiral galaxy seen almost edge-on, giving it the shape of a classic science fiction spaceship. This is why the astronomers at the Astronaut Memorial Planetarium and Observatory, Cocoa, Fla., gave it this attention-grabbing nickname. While a bird's eye view lets us see the detailed structure of a galaxy (such as this Hubble image of a barred spiral), a side-on view has its own perks. In particular, it gives astronomers a great opportunity to see the delicate dusty lanes of the spiral arms silhouetted against the golden haze of the galaxy’s core. In addition, brilliant clusters of young blue stars shine scattered throughout the disc, mapping the galaxy’s star-forming regions. Perhaps surprisingly, side-on views of galaxies like this one do not prevent astronomers from deducing their structures. Studies of the properties of the light coming from NGC 2683 suggest that this is a barred spiral galaxy, even though the angle we see it at does not let us see this directly. This image is produced from two adjacent fields observed in visible and infrared light by Hubble’s Advanced Camera for Surveys. A narrow strip which appears slightly blurred and crosses most the image horizontally is a result of a gap between Hubble’s detectors. This strip has been patched using images from observations of the galaxy made by ground-based telescopes, which show significantly less detail. The field of view is approximately 6.5 by 3.3 arcminutes. Image Credit: ESA/Hubble & NASA
The Photo and excerpt are from the NASA website:
Saturday, March 24, 2012
MESSIER 9 STAR CLUSTER
This photo and excerpt are from the NASA website:
The Hubble Space Telescope has produced the most detailed image so far of Messier 9, a globular star cluster located close to the center of the galaxy. This ball of stars is too faint to see with the naked eye, yet Hubble can see over 250,000 individual stars shining in it. Messier 9, pictured here, is a globular cluster, a roughly spherical swarm of stars that lies around 25,000 light-years from Earth, near the center of the Milky Way, so close that the gravitational forces from the galactic center pull it slightly out of shape. Globular clusters are thought to harbor some of the oldest stars in our galaxy, born when the universe was just a small fraction of its current age. As well as being far older than the sun -- around twice its age -- the stars of Messier 9 also have a markedly different composition, and are enriched with far fewer heavier elements than the sun. In particular, the elements crucial to life on Earth, like oxygen and carbon, and the iron that makes up our planet’s core, are very scarce in Messier 9 and clusters like it. This is because the universe’s heavier elements were gradually formed in the cores of stars, and in supernova explosions. When the stars of Messier 9 formed, there were far smaller quantities of these elements in existence. As well as showing the individual stars, Hubble’s image clearly shows the different colors of the stars. A star’s color is directly related to its temperature -- counter-intuitively, perhaps, the redder it is, the cooler it is; and the bluer it is, the hotter. The wide range of stellar temperatures here is clearly displayed by the broad palette of colors visible in this image. Image Credit: NASA and ESA
Subscribe to:
Posts (Atom)