FROM: NASA
This NASA/ESA Hubble Space Telescope image shows an edge-on view of the spiral galaxy NGC 5023. Due to its orientation we cannot appreciate its spiral arms, but we can admire the elegant profile of its disk.
The galaxy lies over 30 million light-years away from us. NGC 5023 is part of the M51 group of galaxies. The brightest galaxy in this group is Messier 51, the Whirlpool Galaxy, which has been captured by Hubble many times. NGC 5023 is less fond of the limelight and seems rather unsociable in comparison — it is relatively isolated from the other galaxies in the group. Astronomers are particularly interested in the vertical structure of disks like these. By analyzing the structure above and below the central plane of the galaxy they can make progress in understanding galaxy evolution. Astronomers are able to analyze the distribution of different types of stars within the galaxy and their properties, in particular how well evolved they are on the Hertzsprung–Russell Diagram — a scatter graph of stars that shows their evolution. NGC 5023 is one of six edge-on spiral galaxies observed as part of a study using Hubble’s Advanced Camera for Surveys. They study this vertical distribution and find a trend which suggests that heating of the disc plays an important role in producing the stars seen away from the plane of the galaxy. In fact, NGC 5023 is pretty popular when it comes to astronomers, despite its unsociable behavior.
The galaxy is also one of 14 disk galaxies that are part of the GHOSTS survey — a survey which uses Hubble data to study galaxy halos, outer disks and star clusters. It is the largest study to date of star populations in the outskirts of disk galaxies. The incredible sharp sight of Hubble has allowed scientist to count more than 30,000 individual bright stars in this image. This is only a small fraction of the several billion stars that this galaxy contains, but the others are too faint to detect individually even with Hubble. European Space Agency Credit-ESA-NASA
Showing posts with label ASTRONOMY. Show all posts
Showing posts with label ASTRONOMY. Show all posts
Sunday, May 3, 2015
Sunday, August 31, 2014
HUBBLE LOOKS INTO SPACE AND FINDS IT INTERESTING
FROM: NASA
Sunday, May 4, 2014
CENTAURUS A WITH IT'S SUPER-MASSIVE BLACK HOLE CENTER
FROM: NASA
Centaurus A is the fifth brightest galaxy in the sky -- making it an ideal target for amateur astronomers -- and is famous for the dust lane across its middle and a giant jet blasting away from the supermassive black hole at its center. Cen A is an active galaxy about 12 million light years from Earth. This image is part of a "quartet of galaxies" collaboration of professional and amateur astronomers that combines optical data from amateur telescopes with data from the archives of NASA missions. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra's science and flight operations. Image credit: X-ray: NASA/CXC/SAO; Optical: Rolf Olsen; Infrared: NASA/JPL-Caltech.
Sunday, February 23, 2014
GALAXY SHOCK
FROM: NASA
Roguish runaway stars can have a big impact on their surroundings as they plunge through the Milky Way galaxy. Their high-speed encounters shock the galaxy, creating arcs, as seen in this newly released image from NASA’s Spitzer Space Telescope. In this case, the speedster star is known as Kappa Cassiopeiae, or HD 2905 to astronomers. It is a massive, hot supergiant moving at around 2.5 million mph relative to its neighbors (1,100 kilometers per second). But what really makes the star stand out in this image is the surrounding, streaky red glow of material in its path. Such structures are called bow shocks, and they can often be seen in front of the fastest, most massive stars in the galaxy. Bow shocks form where the magnetic fields and wind of particles flowing off a star collide with the diffuse, and usually invisible, gas and dust that fill the space between stars. How these shocks light up tells astronomers about the conditions around the star and in space. Slow-moving stars like our sun have bow shocks that are nearly invisible at all wavelengths of light, but fast stars like Kappa Cassiopeiae create shocks that can be seen by Spitzer’s infrared detectors. Image Credit-NASA-JPL-Caltech
Roguish runaway stars can have a big impact on their surroundings as they plunge through the Milky Way galaxy. Their high-speed encounters shock the galaxy, creating arcs, as seen in this newly released image from NASA’s Spitzer Space Telescope. In this case, the speedster star is known as Kappa Cassiopeiae, or HD 2905 to astronomers. It is a massive, hot supergiant moving at around 2.5 million mph relative to its neighbors (1,100 kilometers per second). But what really makes the star stand out in this image is the surrounding, streaky red glow of material in its path. Such structures are called bow shocks, and they can often be seen in front of the fastest, most massive stars in the galaxy. Bow shocks form where the magnetic fields and wind of particles flowing off a star collide with the diffuse, and usually invisible, gas and dust that fill the space between stars. How these shocks light up tells astronomers about the conditions around the star and in space. Slow-moving stars like our sun have bow shocks that are nearly invisible at all wavelengths of light, but fast stars like Kappa Cassiopeiae create shocks that can be seen by Spitzer’s infrared detectors. Image Credit-NASA-JPL-Caltech
Sunday, December 1, 2013
LADEE TAKES A LOOK
Artist’s concept of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft in orbit above the moon as dust scatters light during the lunar sunset. Image Credit-NASA AMES- Dana Berry |
FROM: NASA
NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) is ready to begin collecting science data about the moon.
On Nov. 20, the spacecraft successfully entered its planned orbit around the moon's equator -- a unique position allowing the small probe to make frequent passes from lunar day to lunar night. This will provide a full scope of the changes and processes occurring within the moon's tenuous atmosphere.
LADEE now orbits the moon about every two hours at an altitude of eight to 37 miles (12-60 kilometers) above the moon's surface. For about 100 days, the spacecraft will gather detailed information about the structure and composition of the thin lunar atmosphere and determine whether dust is being lofted into the lunar sky.
"A thorough understanding of the characteristics of our lunar neighbor will help researchers understand other small bodies in the solar system, such as asteroids, Mercury, and the moons of outer planets," said Sarah Noble, LADEE program scientist at NASA Headquarters in Washington.
Scientists also will be able to study the conditions in the atmosphere during lunar sunrise and sunset, where previous crewed and robotic missions detected a mysterious glow of rays and streamers reaching high into the lunar sky.
“This is what we’ve been waiting for – we are already seeing the shape of things to come,” said Rick Elphic, LADEE project scientist at NASA's Ames Research Center in Moffett Field, Calif.
On Nov. 20, flight controllers in the LADEE Mission Operations Center at Ames confirmed LADEE performed a crucial burn of its orbit control system to lower the spacecraft into its optimal position to enable science collection. Mission managers will continuously monitor the spacecraft's altitude and make adjustments as necessary.
"Due to the lumpiness of the moon's gravitational field, LADEE's orbit requires significant maintenance activity with maneuvers taking place as often as every three to five days, or as infrequently as once every two weeks," said Butler Hine, LADEE project manager at Ames. "LADEE will perform regular orbital maintenance maneuvers to keep the spacecraft’s altitude within a safe range above the surface that maximizes the science return."
In addition to science instruments, the spacecraft carried the Lunar Laser Communications Demonstration, NASA's first high-data-rate laser communication system. It is designed to enable satellite communication at rates similar to those of high-speed fiber optic networks on Earth. The system was tested successfully during the commissioning phase of the mission, while LADEE was still at a higher altitude.
LADEE was launched Sept. 6 on a U.S. Air Force Minotaur V, an excess ballistic missile converted into a space launch vehicle and operated by Orbital Sciences Corp. of Dulles, Va. LADEE is the first spacecraft designed, developed, built, integrated and tested at Ames. It also was the first probe launched beyond Earth orbit from NASA's Wallops Flight Facility on the Virginia coast.
NASA's Science Mission Directorate in Washington funds the LADEE mission. Ames manages the overall mission and serves as a base for mission operations and real-time control of the probe. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the science instruments and technology demonstration payload, the science operations center and overall mission support. NASA's Marshall Space Flight Center in Huntsville, Ala., manages LADEE within the Lunar Quest Program Office.
Saturday, February 2, 2013
THE DEAD STAR
FROM: NASA
Sizzling Remains of a Dead Star
This new view of the historical supernova remnant Cassiopeia A, located 11,000 light-years away, was taken by NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR. Blue indicates the highest energy X-ray light, where NuSTAR has made the first resolved image ever of this source. Red and green show the lower end of NuSTAR's energy range, which overlaps with NASA's high-resolution Chandra X-ray Observatory.
Light from the stellar explosion that created Cassiopeia A is thought to have reached Earth about 300 years ago, after traveling 11,000 years to get here. While the star is long dead, its remains are still bursting with action. The outer blue ring is where the shock wave from the supernova blast is slamming into surrounding material, whipping particles up to within a fraction of a percent of the speed of light. NuSTAR observations should help solve the riddle of how these particles are accelerated to such high energies
X-ray light with energies between 10 and 20 kiloelectron volts are blue; X-rays of 8 to 10 kiloelectron volts are green; and X-rays of 4.5 to 5.5 kiloelectron volts are red.
The starry background picture is from the Digitized Sky Survey.
Image credit: NASA/JPL-Caltech/DSS
Monday, January 14, 2013
PHOTOS FROM MARS
FROM: NASA
Opportunity at 'Copper Cliff,' Sol 3153, Stereo View
This 180-degree, stereo mosaic of images from the navigation camera on the NASA Mars Exploration Rover Opportunity shows terrain near the rover during the 3,153rd Martian day, or sol, of the rover's work on Mars (Dec. 6, 2012). West is at the center, south at the left edge, north at the right edge. The view appears in three dimensions when viewed through red-blue glasses with the red lens on the left.
Opportunity had driven about 7 feet (2.2 meters) westward earlier on Sol 3153 to get close to the outcrop called "Copper Cliff," which is in the center of this scene. The location is on the east-central portion of "Matijevic Hill" on the "Cape York" segment of the western rim of Endeavour Crater.
The view is presented as a cylindrical-perspective projection.
Credit-NASA-JPL-Caltech
Panoramic View From Near 'Point Lake' in Gale Crater, Sol 106
This panorama is a mosaic of images taken by the Mast Camera (Mastcam) on the NASA Mars rover Curiosity during the 106th Martian day, or sol, of the mission (Nov. 22, 2012). The rover was near a location called "Point Lake" for an overlook of a shallow depression called "Yellowknife Bay" which is in the left third of this scene, in the middle distance.
The image spans 360 degrees, with south at the center. It has been white-balanced to show what the rocks and soils in it would look like if they were on Earth.
Image Credit-NASA-JPL-Caltech-Malin Space Science Systems
Opportunity at 'Copper Cliff,' Sol 3153, Stereo View
This 180-degree, stereo mosaic of images from the navigation camera on the NASA Mars Exploration Rover Opportunity shows terrain near the rover during the 3,153rd Martian day, or sol, of the rover's work on Mars (Dec. 6, 2012). West is at the center, south at the left edge, north at the right edge. The view appears in three dimensions when viewed through red-blue glasses with the red lens on the left.
Opportunity had driven about 7 feet (2.2 meters) westward earlier on Sol 3153 to get close to the outcrop called "Copper Cliff," which is in the center of this scene. The location is on the east-central portion of "Matijevic Hill" on the "Cape York" segment of the western rim of Endeavour Crater.
The view is presented as a cylindrical-perspective projection.
Credit-NASA-JPL-Caltech
Panoramic View From Near 'Point Lake' in Gale Crater, Sol 106
This panorama is a mosaic of images taken by the Mast Camera (Mastcam) on the NASA Mars rover Curiosity during the 106th Martian day, or sol, of the mission (Nov. 22, 2012). The rover was near a location called "Point Lake" for an overlook of a shallow depression called "Yellowknife Bay" which is in the left third of this scene, in the middle distance.
The image spans 360 degrees, with south at the center. It has been white-balanced to show what the rocks and soils in it would look like if they were on Earth.
Image Credit-NASA-JPL-Caltech-Malin Space Science Systems
Labels:
ASTRONOMY,
CALTECH,
CAPE YORK,
COPPER CLIFF,
ENDEAVOUR CRATER,
GEOSCIENCE,
JATIJEVIC HILL,
JPL,
MARS EXPLORATION ROVER OPPORTUNITY,
MARTIAN DAY,
NASA,
POINT LAKE,
SCIENCE,
SOL,
SOL 3153,
YELLOWKNIFE BAY
Subscribe to:
Posts (Atom)