The International Space Station. Credit: NASA

Thursday, May 30, 2013

NASA - Barbara (Eastern Pacific Ocean)

NASA - Barbara (Eastern Pacific Ocean)

TO THE SPACE STATION, EPEDITION 36 CREW LAUNCH

 



FROM:  NASA VIDEO

Expedition 36 Crew Launches on Fast Track to Station

The Soyuz TMA-09M spacecraft carrying Soyuz Commander Fyodor Yurchikhin and Flight Engineers Karen Nyberg and Luca Parmitano launches from the Baikonur Cosmodrome in Kazakhstan to begin an expedited 6-hour journey to the International Space Station.

Wednesday, May 29, 2013

Launch replay

Launch replay


Monday, May 27, 2013

U.S. Department of Defense Armed with Science Update

U.S. Department of Defense Armed with Science Update

Immagine EO della settimana: Il Tesoro del Kazakistan

Immagine EO della settimana: Il Tesoro del Kazakistan

STATEMENT FROM NASA ON MEETINGS IN EUROPE

FROM: NASA
NASA Statement on Space Technology Meetings in Europe

WASHINGTON -- The following is a statement from NASA's associate administrator for space technology, Michael Gazarik, about his meetings this week in Europe to discuss potential cooperation on development of space technologies that will enable NASA's future missions. These include the asteroid initiative announced in the president's fiscal year 2014 budget proposal.

"During my meetings this week with the German Space Agency, DLR; the European Space Program, ESA; and the French Space Program, CNES, I had an opportunity to view and learn about our partner's areas of technology focus and expertise and begin the process of identifying areas of potential cooperation in space technology. Our working-level discussions proved to be informative and productive. Our meetings also allowed me to share NASA's plans for our new asteroid initiative. NASA recognizes cooperation and collaboration are critical to meet increasingly global challenges. I look forward to working with our partners as we create the new knowledge and capabilities needed to enable the space missions of the future."

Gazarik is head of NASA's Space Technology Mission Directorate, which is innovating, developing, testing and flying hardware for use in NASA's future missions

Sunday, May 26, 2013

NASA - Magnetar SGR 0418

NASA - Magnetar SGR 0418


THE STUDY OF SPACE WEATHER: AN EXPERIMENT AT THE SOUTH POLE




FROM: NASA 

In Antarctica in January, 2013 – the summer at the South Pole – scientists released 20 balloons, each eight stories tall, into the air to help answer an enduring space weather question: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? This NASA-funded mission is called BARREL, for Balloon Array for Radiation belt Relativistic Electron Losses. Each balloon launched by the BARREL team floated for anywhere from three to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere.BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels directly through the Van Allen radiation belts. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites orbiting Earth must travel. Scientists need to understand this process better, and even provide forecasts of such space weather, in order to protect our spacecraft.  Image Credit: NASA

Saturday, May 25, 2013

U.S. Department of Defense Armed with Science Update

U.S. Department of Defense Armed with Science Update


MEGA GALAXY MERGER MAKES MANY STARS

FROM: NASA, HERSCHEL SPACE OBSERVATORY
Herschel Space Observatory Finds Mega Merger of Galaxies


WASHINGTON -- A massive and rare merging of two galaxies has been spotted in images taken by the Herschel space observatory, a European Space Agency mission with important NASA participation.

Follow-up studies by several telescopes on the ground and in space, including NASA's Hubble Space Telescope and Spitzer Space Telescope, tell a tale of two faraway galaxies intertwined and furiously making stars. Eventually, the duo will settle down to form one super-giant elliptical galaxy.

The findings help explain a mystery in astronomy. Back when our universe was 3 billion to 4 billion years old, it was populated with large reddish elliptical-shaped galaxies made up of old stars. Scientists have wondered whether those galaxies built up slowly over time through the acquisitions of smaller galaxies, or formed more rapidly through powerful collisions between two large galaxies.

The new findings suggest massive mergers are responsible for the giant elliptical galaxies.

"We're looking at a younger phase in the life of these galaxies -- an adolescent burst of activity that won't last very long," said Hai Fu of the University of California at Irvine, who is lead author of a new study describing the results. The study is published in the May 22 online issue of Nature.

"These merging galaxies are bursting with new stars and completely hidden by dust," said co-author Asantha Cooray, also of the University of California at Irvine. "Without Herschel's far-infrared detectors, we wouldn't have been able to see through the dust to the action taking place behind."

Herschel, which operated for almost four years, was designed to see the longest-wavelength infrared light. As expected, it recently ran out of the liquid coolant needed to chill its delicate infrared instruments. While its mission in space is over, astronomers still are scrutinizing the data, and further discoveries are expected.

In the new study, Herschel was used to spot the colliding galaxies, called HXMM01, located about 11 billion light-years from Earth, during a time when our universe was about 3 billion years old. At first, astronomers thought the two galaxies were just warped, mirror images of one galaxy. Such lensed galaxies are fairly common in astronomy and occur when the gravity from a foreground galaxy bends the light from a more distant object. After a thorough investigation, the team realized they were actually looking at a massive galaxy merger.

Follow-up characterization revealed the duo is churning out the equivalent of 2,000 stars a year. By comparison, our Milky Way hatches about two to three stars a year. The total number of stars in both colliding galaxies averages out to about 400 billion.

Mergers are fairly common in the cosmos, but this particular event is more unusual because of the prolific amounts of gas and star formation, and the sheer size of the merger at such a distant epoch.

The results go against the more popular model explaining how the biggest galaxies arise: through minor acquisitions of small galaxies. Instead, mega smash-ups may be doing the job.


Saturday, May 18, 2013

IMMENSE POWER GENERATED BY SUPERMASSIVE BLACK HOLE




FROM: NASA

This composite image of a galaxy illustrates how the intense gravity of a supermassive black hole can be tapped to generate immense power. The image contains X-ray data from NASA's Chandra X-ray Observatory (blue), optical light obtained with the Hubble Space Telescope (gold) and radio waves from the NSF’s Very Large Array (pink).

This multi-wavelength view shows 4C+29.30, a galaxy located some 850 million light years from Earth. The radio emission comes from two jets of particles that are speeding at millions of miles per hour away from a supermassive black hole at the center of the galaxy. The estimated mass of the black hole is about 100 million times the mass of our Sun. The ends of the jets show larger areas of radio emission located outside the galaxy.

The X-ray data show a different aspect of this galaxy, tracing the location of hot gas. The bright X-rays in the center of the image mark a pool of million-degree gas around the black hole. Some of this material may eventually be consumed by the black hole, and the magnetized, whirlpool of gas near the black hole could in turn, trigger more output to the radio jet.

Most of the low-energy X-rays from the vicinity of the black hole are absorbed by dust and gas, probably in the shape of a giant doughnut around the black hole. This doughnut, or torus blocks all the optical light produced near the black hole, so astronomers refer to this type of source as a hidden or buried black hole. The optical light seen in the image is from the stars in the galaxy.

The bright spots in X-ray and radio emission on the outer edges of the galaxy, near the ends of the jets, are caused by extremely high energy electrons following curved paths around magnetic field lines. They show where a jet generated by the black hole has plowed into clumps of material in the galaxy (mouse over the image for the location of these bright spots). Much of the energy of the jet goes into heating the gas in these clumps, and some of it goes into dragging cool gas along the direction of the jet. Both the heating and the dragging can limit the fuel supply for the supermassive black hole, leading to temporary starvation and stopping its growth. This feedback process is thought to cause the observed correlation between the mass of the supermassive black hole and the combined mass of the stars in the central region or bulge or a galaxy.

These results were reported in two different papers. The first, which concentrated on the effects of the jets on the galaxy, is available online and was published in the May 10, 2012 issue of The Astrophysical Journal. It is led by Aneta Siemiginowska from the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, MA and the co-authors are Łukasz Stawarz, from the Institute of Space and Astronautical Science in Yoshinodai, Japan; Teddy Cheung from the National Academy of Sciences in Washington, DC; Thomas Aldcroft from CfA; Jill Bechtold from University of Arizona in Tucson, AZ; Douglas Burke from CfA; Daniel Evans from CfA; Joanna Holt from Leiden University in Leiden, The Netherlands; Marek Jamrozy from Jagiellonian University in Krakow, Poland; and Giulia Migliori from CfA. The second, which concentrated on the supermassive black hole, is available online and was published in the October 20, 2012 issue of The Astrophysical Journal. It is led by Malgorzata Sobolewska from CfA, and the co-authors are Aneta Siemiginowska, Giulia Migliori, Łukasz Stawarz, Marek Jamrozy, Daniel Evans, and Teddy Cheung.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

Credits: X-ray: NASA/CXC/SAO/A. Siemiginowska et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA


Monday, May 13, 2013

U.S. Department of Defense Armed with Science Update

U.S. Department of Defense Armed with Science Update

NASA VIDEO OF MASSIVE SOLAR ERUPTION




FROM: NASA
Several missions within NASA’s Heliophysics observatory captured images of a gigantic eruption on the sun on May 1, 2013. Working together, such missions provide excellent coverage of a wide variety of solar events, a wealth of scientific data -- and lots of beautiful imagery

Saturday, May 11, 2013

SCIENTISTS LOOK AT NEUTRAL WINDS IN THE IONOSPHERE

FROM: NASA

Red and white vapor clouds filled the skies over the Marshall Islands as part of NASA’s Equatorial Vortex Experiment (EVEX). The red cloud was formed by the release of lithium vapor and the white tracer clouds were formed by the release of trimethyl aluminum (TMA). These clouds allowed scientists on the ground from various locations in the Marshall Islands to observe the neutral winds in the ionosphere. The EVEX was successfully conducted during the early morning hours on May 7 from Roi Namur, Republic of the Marshall Islands. A NASA Terrier-Oriole sounding rocket was launched at 3:39 a.m. EDT and was followed by a launch of Terrier-Improved Malemute sounding rocket 90 seconds later. Preliminary indications are that both rockets released their vapor clouds of lithium or trimethyl aluminum, which were observed from various locations in the area, and all science instruments on the rockets worked as planned. Image Credit: NASA/John Grant

Sunday, May 5, 2013

Launch postponed

Launch postponed


TILT ROTOR AIRCRAFT FOR COMMERCIAL TRAVEL




FROM: NASA

Now Minute: Engineering Design: Tilt Rotors, Aircraft of the Future


Meet Carl Russell, a research aerospace engineer who is working on developing new innovations for air travel. Russell discusses how tilt rotors work, including a demonstration on how rotors use Bernoulli’s Principle to generate lift.

Saturday, May 4, 2013

KEPLER DISCOVERS TWO NEW PLANETARY SYSTEMS WITH "HABITABLE ZONE" PLANETS

Relative sizes of all of the habitable-zone planets discovered to date alongside Earth. Left to right: Kepler-22b, Kepler-69c, Kepler-62e, Kepler-62f and Earth (except for Earth, these are artists' renditions). Image credit: NASA Ames/JPL-Caltech.
FROM: NASA

MOFFETT FIELD, Calif. -- NASA's Kepler mission has discovered two new planetary systems that include three super-Earth-size planets in the "habitable zone," the range of distance from a star where the surface temperature of an orbiting planet might be suitable for liquid water.

The Kepler-62 system has five planets; 62b, 62c, 62d, 62e and 62f. The Kepler-69 system has two planets; 69b and 69c. Kepler-62e, 62f and 69c are the super-Earth-sized planets.

Two of the newly discovered planets orbit a star smaller and cooler than the sun. Kepler-62f is only 40 percent larger than Earth, making it the exoplanet closest to the size of our planet known in the habitable zone of another star. Kepler-62f is likely to have a rocky composition. Kepler-62e, orbits on the inner edge of the habitable zone and is roughly 60 percent larger than Earth.

The third planet, Kepler-69c, is 70 percent larger than the size of Earth, and orbits in the habitable zone of a star similar to our sun. Astronomers are uncertain about the composition of Kepler-69c, but its orbit of 242 days around a sun-like star resembles that of our neighboring planet Venus.

Scientists do not know whether life could exist on the newfound planets, but their discovery signals we are another step closer to finding a world similar to Earth around a star like our sun.

"The Kepler spacecraft has certainly turned out to be a rock star of science," said John Grunsfeld, associate administrator of the Science Mission Directorate at NASA Headquarters in Washington. "The discovery of these rocky planets in the habitable zone brings us a bit closer to finding a place like home. It is only a matter of time before we know if the galaxy is home to a multitude of planets like Earth, or if we are a rarity."

The Kepler space telescope, which simultaneously and continuously measures the brightness of more than 150,000 stars, is NASA's first mission capable of detecting Earth-size planets around stars like our sun. Orbiting its star every 122 days, Kepler-62e was the first of these habitable zone planets identified. Kepler-62f, with an orbital period of 267 days, was later found by Eric Agol, associate professor of astronomy at the University of Washington and co-author of a paper on the discoveries published in the journal Science.

The size of Kepler-62f is now measured, but its mass and composition are not. However, based on previous studies of rocky exoplanets similar in size, scientists are able to estimate its mass by association.

"The detection and confirmation of planets is an enormously collaborative effort of talent and resources, and requires expertise from across the scientific community to produce these tremendous results," said William Borucki, Kepler science principal investigator at NASA's Ames Research Center at Moffett Field, Calif., and lead author of the Kepler-62 system paper in Science. "Kepler has brought a resurgence of astronomical discoveries and we are making excellent progress toward determining if planets like ours are the exception or the rule."

The two habitable zone worlds orbiting Kepler-62 have three companions in orbits closer to their star, two larger than the size of Earth and one about the size of Mars. Kepler-62b, Kepler-62c and Kepler-62d, orbit every five, 12, and 18 days, respectively, making them very hot and inhospitable for life as we know it.

The five planets of the Kepler-62 system orbit a star classified as a K2 dwarf, measuring just two-thirds the size of the sun and only one-fifth as bright. At seven billion years old, the star is somewhat older than the sun. It is about 1,200 light-years from Earth in the constellation Lyra.

A companion to Kepler-69c, known as Kepler-69b, is more than twice the size of Earth and whizzes around its star every 13 days. The Kepler-69 planets' host star belongs to the same class as our sun, called G-type. It is 93 percent the size of the sun and 80 percent as luminous and is located approximately 2,700 light-years from Earth in the constellation Cygnus.

"We only know of one star that hosts a planet with life, the sun. Finding a planet in the habitable zone around a star like our sun is a significant milestone toward finding truly Earth-like planets," said Thomas Barclay, Kepler scientist at the Bay Area Environmental Research Institute in Sonoma, Calif., and lead author of the Kepler-69 system discovery published in the Astrophysical Journal.

When a planet candidate transits, or passes in front of the star from the spacecraft's vantage point, a percentage of light from the star is blocked. The resulting dip in the brightness of the starlight reveals the transiting planet's size relative to its star. Using the transit method, Kepler has detected 2,740 candidates. Using various analysis techniques, ground telescopes and other space assets, 122 planets have been confirmed.

Early in the mission, the Kepler telescope primarily found large, gaseous giants in very close orbits of their stars. Known as "hot Jupiters," these are easier to detect due to their size and very short orbital periods. Earth would take three years to accomplish the three transits required to be accepted as a planet candidate. As Kepler continues to observe, transit signals of habitable zone planets the size of Earth orbiting stars like the sun will begin to emerge.

Ames is responsible for Kepler's ground system development, mission operations, and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development.

Ball Aerospace & Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

The Space Telescope Science Institute in Baltimore archives, hosts and distributes Kepler science data. Kepler is NASA's 10th Discovery Mission and was funded by the agency's Science Mission Directorate.

For more information about the Kepler mission and to view the digital press kit, visit: