The International Space Station. Credit: NASA
Showing posts with label GALAXIES. Show all posts
Showing posts with label GALAXIES. Show all posts

Sunday, March 15, 2015

PERSPECTIVE OF GALAXY NGC 7914

FROM:  NASA 



Caption Credit:  NASA.  Galaxies can take many shapes and be oriented any way relative to us in the sky. This can make it hard to figure out their actual morphology, as a galaxy can look very different from different viewpoints. A special case is when we are lucky enough to observe a spiral galaxy directly from its edge, providing us with a spectacular view like the one seen in this picture of the week. This is NGC 7814, also known as the “Little Sombrero.” Its larger namesake, the Sombrero Galaxy, is another stunning example of an edge-on galaxy — in fact, the “Little Sombrero” is about the same size as its bright namesake at about 60,000 light-years across, but as it lies farther away, and so appears smaller in the sky. NGC 7814 has a bright central bulge and a bright halo of glowing gas extending outwards into space. The dusty spiral arms appear as dark streaks. They consist of dusty material that absorbs and blocks light from the galactic center behind it. The field of view of this NASA/ESA Hubble Space Telescope image would be very impressive even without NGC 7814 in front; nearly all the objects seen in this image are galaxies as well. European Space Agency Credit: ESA/Hubble & NASA Acknowledgement: Josh Barrington.

Tuesday, November 15, 2011

GALATIC ENCOUNTERS MAY CAUSE GROWTH OF HUGE BLACK HOLES

The following excerpt is from the NASA website:

"Astronomers have used a large survey to test a prediction that close encounters between galaxies can trigger the rapid growth of supermassive black holes. Key to this work was Chandra's unique ability to pinpoint actively growing black holes through the X-rays they generate.

The researchers looked at 562 pairs of galaxies ranging in distances from about 3 billion to 8 billion light years from Earth. They found that the galaxies in the early stages of an encounter with another were more likely than isolated, or "lonelier" galaxies to have actively growing black holes in their cores.

These two composite images show a sample of the pairs of galaxies that are undergoing close encounters in the survey. In these images, the data from NASA's Chandra X-ray Observatory are shown in purple and Hubble Space Telescope data are in gold. In both images, the point-like X-ray source near the center is generated by gas that has been heated to millions of degrees as it falls toward a supermassive black hole located in the middle of its host galaxy. The other faint X-ray emission may be caused by hot gas associated with the pair of galaxies.

The authors of the study estimate that nearly one-fifth of all moderately active black holes are found in galaxies undergoing the early stages of an interaction. This leaves open the question of what events are responsible for fueling the remaining 80% of growing black holes. Some of these may involve the late stages of mergers between two galaxies. Less violent events such as gas falling in from the halo of the galaxy, or the disruption of small satellite galaxies are also likely to play an important role.

The survey used in this research is called the Cosmic Evolution Survey (COSMOS), which covers two square degrees on the sky with observations from several major space-based observatories including Chandra and Hubble. Accurate distance information about the galaxies was also derived from optical observations with the European Southern Observatory's Very Large Telescope. The researchers compared a sample of 562 galaxies in pairs with 2726 solo galaxies to come to their conclusions.

A paper describing this work has been accepted for publication in The Astrophysical Journal. The study was led by John Silverman from the Institute for the Physics and Mathematics of the Universe (IPMU) at the University of Tokyo in Japan. There are 54 co-authors from various institutions around the world.

Credits: X-ray: NASA/CXC/IPMU/J.Silverman et al; Optical: NASA/STScI/Caltech/N.Scoville et al."