The International Space Station. Credit: NASA
Showing posts with label SUPER MASSIVE BLACK HOLE. Show all posts
Showing posts with label SUPER MASSIVE BLACK HOLE. Show all posts

Wednesday, June 6, 2012

RIPPLES IN THE FABRIC OF SPACE EJECT BLACK HOLE FROM A GALAXY


FROM:  NASA
GIANT BLACK HOLE KICKED OUT OF HOME GALAXY
WASHINGTON -- Astronomers have found strong evidence that a massive
black hole is being ejected from its host galaxy at a speed of
several million miles per hour. New observations from NASA's Chandra
X-ray Observatory suggest that the black hole collided and merged
with another black hole and received a powerful recoil kick from
gravitational wave radiation.

"It's hard to believe that a supermassive black hole weighing millions
of times the mass of the sun could be moved at all, let alone kicked
out of a galaxy at enormous speed," said Francesca Civano of the
Harvard-Smithsonian Center for Astrophysics (CfA), who led the new
study. "But these new data support the idea that gravitational waves
-- ripples in the fabric of space first predicted by Albert Einstein
but never detected directly -- can exert an extremely powerful
force."

Although the ejection of a supermassive black hole from a galaxy by
recoil because more gravitational waves are being emitted in one
direction than another is likely to be rare, it nevertheless could
mean that there are many giant black holes roaming undetected out in
the vast spaces between galaxies.

"These black holes would be invisible to us," said co-author Laura
Blecha, also of CfA, "because they have consumed all of the gas
surrounding them after being thrown out of their home galaxy."

Civano and her group have been studying a system known as CID-42,
located in the middle of a galaxy about 4 billion light years away.
They had previously spotted two distinct, compact sources of optical
light in CID-42, using NASA's Hubble Space Telescope.

More optical data from the ground-based Magellan and Very Large
Telescopes in Chile supplied a spectrum (that is, the distribution of
optical light with energy) that suggested the two sources in CID-42
are moving apart at a speed of at least 3 million miles per hour.

Previous Chandra observations detected a bright X-ray source likely
caused by super-heated material around one or more supermassive black
holes. However, they could not distinguish whether the X-rays came
from one or both of the optical sources because Chandra was not
pointed directly at CID-42, giving an X-ray source that was less
sharp than usual.

"The previous data told us that there was something special going on,
but we couldn't tell if there were two black holes or just one," said
another co-author Martin Elvis, also of CfA. "We needed new X-ray
data to separate the sources."

When Chandra's sharp High Resolution Camera was pointed directly at
CID-42, the resulting data showed that X-rays were coming only from
one of the sources. The team thinks that when two galaxies collided,
the supermassive black holes in the center of each galaxy also
collided. The two black holes then merged to form a single black hole
that recoiled from gravitational waves produced by the collision,
which gave the newly merged black hole a sufficiently large kick for
it to eventually escape from the galaxy.

The other optical source is thought to be the bright star cluster that
was left behind. This picture is consistent with recent computer
simulations of merging black holes, which show that merged black
holes can receive powerful kicks from the emission of gravitational
waves.

There are two other possible explanations for what is happening in
CID-42. One would involve an encounter between three supermassive
black holes, resulting in the lightest one being ejected. Another
idea is that CID-42 contains two supermassive black holes spiraling
toward one another, rather than one moving quickly away.

Both of these alternate explanations would require at least one of the
supermassive black holes to be very obscured, since only one bright
X-ray source is observed. Thus the Chandra data support the idea of a
black hole recoiling because of gravitational waves.

These results will appear in the June 10 issue of The Astrophysical
Journal.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the
Chandra Program for the agency's Science Mission Directorate in
Washington. The Smithsonian Astrophysical Observatory in Cambridge,
Mass., controls Chandra's science and flight operations.



Monday, April 16, 2012

BLACK HOLE BLAZARS AND THE RELEASE OF NEARLY LIGHT SPEED JETS


FROM:  NASA
WASHINGTON -- Astronomers are actively hunting a class of supermassive
black holes throughout the universe called blazars thanks to data
collected by NASA's Wide-field Infrared Survey Explorer (WISE). The
mission has revealed more than 200 blazars and has the potential to
find thousands more.

Blazars are among the most energetic objects in the universe. They
consist of supermassive black holes actively "feeding," or pulling
matter onto them, at the cores of giant galaxies. As the matter is
dragged toward the supermassive hole, some of the energy is released
in the form of jets traveling at nearly the speed of light. Blazars
are unique because their jets are pointed directly at us.

"Blazars are extremely rare because it's not too often that a
supermassive black hole's jet happens to point towards Earth," said
Franceso Massaro of the Kavli Institute for Particle Astrophysics and
Cosmology near Palo Alto, Calif., and principal investigator of the
research, published in a series of papers in the Astrophysical
Journal. "We came up with a crazy idea to use WISE's infrared
observations, which are typically associated with lower-energy
phenomena, to spot high-energy blazars, and it worked better than we
hoped."

The findings ultimately will help researchers understand the extreme
physics behind super-fast jets and the evolution of supermassive
black holes in the early universe.

WISE surveyed the entire celestial sky in infrared light in 2010,
creating a catalog of hundreds of millions of objects of all types.
Its first batch of data was released to the larger astronomy
community in April 2011 and the full-sky data were released last
month.

Massaro and his team used the first batch of data, covering more than
one-half the sky, to test their idea that WISE could identify
blazars. Astronomers often use infrared data to look for the weak
heat signatures of cooler objects. Blazars are not cool; they are
scorching hot and glow with the highest-energy type of light, called
gamma rays. However, they also give off a specific infrared signature
when particles in their jets are accelerated to almost the speed of
light.

One of the reasons the team wants to find new blazars is to help
identify mysterious spots in the sky sizzling with high-energy gamma
rays, many of which are suspected to be blazars. NASA's Fermi mission
has identified hundreds of these spots, but other telescopes are
needed to narrow in on the source of the gamma rays.

Sifting through the early WISE catalog, the astronomers looked for the
infrared signatures of blazars at the locations of more than 300
gamma-ray sources that remain mysterious. The researchers were able
to show that a little more than half of the sources are most likely
blazars.

"This is a significant step toward unveiling the mystery of the many
bright gamma-ray sources that are still of unknown origin," said
Raffaele D'Abrusco, a co-author of the papers from Harvard
Smithsonian Center for Astrophysics in Cambridge, Mass. "WISE's
infrared vision is actually helping us understand what's happening in
the gamma-ray sky."

The team also used WISE images to identify more than 50 additional
blazar candidates and observed more than 1,000 previously discovered
blazars. According to Massaro, the new technique, when applied
directly to WISE's full-sky catalog, has the potential to uncover
thousands more.

"We had no idea when we were building WISE that it would turn out to
yield a blazar gold mine," said Peter Eisenhardt, WISE project
scientist at NASA's Jet Propulsion Laboratory (JPL) in Pasadena,
Calif., who is not associated with the new studies. "That's the
beauty of an all-sky survey. You can explore the nature of just about
any phenomenon in the universe."  
                                                
                                                 Image of a Black Hole. Credit NASA 

JPL manages and operates WISE for NASA's Science Mission Directorate
in Washington. The principal investigator for WISE, Edward Wright, is
at UCLA. The mission was competitively selected under NASA's
Explorers Program, managed by the Goddard Space Flight Center in
Greenbelt, Md. The science instrument was built by the Space Dynamics
Laboratory in Logan, Utah, and the spacecraft was built by Ball

Aerospace & Technologies Corp. in Boulder, Colo. Science operations
and data processing and archiving take place at the Infrared
Processing and Analysis Center at the California Institute of
Technology (Caltech) in Pasadena. Caltech manages JPL for NASA.







Monday, March 12, 2012

HUBBLE PANCHROMATIC VIEW OF GALAXY CENTAURIS A


“Resembling looming rain clouds on a stormy day, dark lanes of dust crisscross the giant elliptical galaxy Centaurus A. Hubble's panchromatic vision, stretching from ultraviolet through near-infrared wavelengths, reveals the vibrant glow of young, blue star clusters and a glimpse into regions normally obscured by the dust. The warped shape of Centaurus A's disk of gas and dust is evidence for a past collision and merger with another galaxy. The resulting shockwaves cause hydrogen gas clouds to compress, triggering a firestorm of new star formation. These are visible in the red patches in this Hubble close-up. At a distance of just over 11 million light-years, Centaurus A contains the closest active galactic nucleus to Earth. The center is home for a supermassive black hole that ejects jets of high-speed gas into space, but neither the supermassive black hole or the jets are visible in this image. This image was taken in July 2010 with Hubble's Wide Field Camera 3. Image Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration Acknowledgment: R. O'Connell (University of Virginia) and the WFC3 Scientific Oversight Committee”

The above picture and excerpt are from the NASA website: