Showing posts with label X-RAY TELESCOPE. Show all posts
Showing posts with label X-RAY TELESCOPE. Show all posts
Saturday, June 2, 2012
NASA PREPARING TO LAUNCH ITS NEWEST X-RAY TELESCOPE ARRAY CALLED NUSTAR
NASA PREPARING TO LAUNCH ITS NEWEST X-RAY EYES
WASHINGTON -- NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR,
is being prepared for the final journey to its launch pad on
Kwajalein Atoll in the central Pacific Ocean. The mission will study
everything from massive black holes to our own sun. It is scheduled
to launch no earlier than June 13.
"We will see the hottest, densest and most energetic objects with a
fundamentally new high-energy X-ray telescope that can obtain much
deeper and crisper images than before," said Fiona Harrison, the
NuSTAR principal investigator at the California Institute of
Technology (Caltech) in Pasadena, Calif., who first conceived of the
mission 20 years ago.
The observatory is perched atop an Orbital Sciences Corporation
Pegasus XL rocket. If the mission passes its Flight Readiness Review
on June 1, the rocket will be strapped to the bottom of an aircraft,
the L-1011 Stargazer, also operated by Orbital, on June 2. The
Stargazer is scheduled to fly from Vandenberg Air Force Base in
central California to Kwajalein June 5-6.
On launch day, the Stargazer will take off and at around 11:30 a.m.
EDT (8:30 a.m. PDT) will drop the rocket, which will then ignite and
carry NuSTAR to a low orbit around Earth.
"NuSTAR uses several innovations for its unprecedented imaging
capability and was made possible by many partners," said Yunjin Kim,
the project manager for the mission at NASA's Jet Propulsion
Laboratory (JPL) in Pasadena, Calif. "We're all really excited to see
the fruition of our work begin its mission in space."
NuSTAR will be the first space telescope to create focused images of
cosmic X-rays with the highest energies. These are the same types of
X-rays that doctors use to see your bones and airports use to scan
your bags. The telescope will have more than 10 times the resolution,
and more than 100 times the sensitivity, of its predecessors while
operating in a similar energy range.
The mission will work with other telescopes in space now, including
NASA's Chandra X-ray Observatory, which observes lower-energy X-rays.
Together, they will provide a more complete picture of the most
energetic and exotic objects in space, such as black holes, dead
stars and jets traveling near the speed of light.
"NuSTAR truly demonstrates the value that NASA's research and
development programs provide in advancing the nation's science
agenda," said Paul Hertz, NASA's Astrophysics Division director.
"Taking just over four years from receiving the project go-ahead to
launch, this low-cost Explorer mission will use new mirror and
detector technology that was developed in NASA's basic research
program and tested in NASA's scientific ballooning program. The
result of these modest investments is a small space telescope that
will provide world-class science in an important but relatively
unexplored band of the electromagnetic spectrum."
NuSTAR will study black holes that are big and small, far and near,
answering questions about the formation and physics behind these
wonders of the cosmos. The observatory will also investigate how
exploding stars forge the elements that make up planets and people,
and it will even study our own sun's atmosphere.
The observatory is able to focus the high-energy X-ray light into
sharp images because of a complex, innovative telescope design.
High-energy light is difficult to focus because it only reflects off
mirrors when hitting at nearly parallel angles. NuSTAR solves this
problem with nested shells of mirrors. It has the most nested shells
ever used in a space telescope, 133 in each of two optic units. The
mirrors were molded from ultra-thin glass similar to that found in
laptop screens and glazed with even thinner layers of reflective
coating.
The telescope also consists of state-of-the-art detectors and a
lengthy 33-foot (10-meter) mast, which connects the detectors to the
nested mirrors, providing the long distance required to focus the
X-rays. This mast is folded up into a canister small enough to fit
atop the Pegasus launch vehicle. It will unfurl about seven days
after launch. About 23 days later, science operations will begin.
NuSTAR is a Small Explorer mission led by Caltech and managed by JPL
for NASA's Science Mission Directorate in Washington. The spacecraft
was built by Orbital Sciences Corporation in Dulles, Va. Its
instrument was built by a consortium including Caltech; JPL;
University of California at Berkeley (UC Berkeley); Columbia
University in New York; NASA's Goddard Space Flight Center in
Greenbelt, Md.; the Danish Technical University in Denmark; Lawrence
Livermore National Laboratory in Livermore, Calif.; and ATK Aerospace
Systems in Goleta, Calif. NuSTAR will be operated by UC Berkeley,
with the Italian Space Agency providing its equatorial ground station
located at Malindi, Kenya. The mission's outreach program is based at
Sonoma State University in Rohnert Park, Calif. NASA's Explorer
Program is managed by Goddard. JPL is managed by Caltech for NASA.
Subscribe to:
Posts (Atom)