The International Space Station. Credit: NASA

Sunday, July 6, 2014

A LOOK INTO DESTINY


FROM:  NASA 

This view in the International Space Station, photographed by an Expedition 40 crew member, shows how it looks inside the space station while the crew is asleep. The dots near the hatch point to a Soyuz spacecraft docked to the station in case the crew was to encounter an emergency. This view is looking into the Destiny Laboratory from Node 1 (Unity) with Node 2 (Harmony) in the background. Destiny is the primary research laboratory for U.S. payloads, supporting a wide range of experiments and studies. Image Credit: NASA.

Sunday, June 29, 2014

A LOOK AT GALAXY NGC 4485

FROM:  NASA




This image from NASA/ESA's Hubble Space Telescope shows galaxy NGC 4485 in the constellation of Canes Venatici (The Hunting Dogs). The galaxy is irregular in shape, but it hasn’t always been so. Part of NGC 4485 has been dragged towards a second galaxy, named NGC 4490 — which lies out of frame to the bottom right of this image. Between them, these two galaxies make up a galaxy pair called Arp 269. Their interactions have warped them both, turning them from spiral galaxies into irregular ones. NGC 4485 is the smaller galaxy in this pair, which provides a fantastic real-world example for astronomers to compare to their computer models of galactic collisions. The most intense interaction between these two galaxies is all but over; they have made their closest approach and are now separating. The trail of bright stars and knotty orange clumps that we see here extending out from NGC 4485 is all that connects them — a trail that spans some 24 000 light-years. Many of the stars in this connecting trail could never have existed without the galaxies’ fleeting romance. When galaxies interact hydrogen gas is shared between them, triggering intense bursts of star formation. The orange knots of light in this image are examples of such regions, clouded with gas and dust. European Space Agency Credit: ESA/Hubble & NASA, Acknowledgement: Kathy van Pelt.

Sunday, June 22, 2014

THE PATH TO MARS AND BEYOND


FROM:  NASA

NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s – goals outlined in the bipartisan NASA Authorization Act of 2010 and in the U.S. National Space Policy, also issued in 2010.  A fleet of robotic spacecraft and rovers already are on and around Mars, dramatically increasing our knowledge about the Red Planet and paving the way for future human explorers. The Mars Science Laboratory Curiosity rover measured radiation on the way to Mars and is sending back radiation data from the surface. This data will help us plan how to protect the astronauts who will explore Mars. Future missions like the Mars 2020 rover, seeking signs of past life, also will demonstrate new technologies that could help astronauts survive on Mars.  Engineers and scientists around the country are working hard to develop the technologies astronauts will use to one day live and work on Mars, and safely return home from the next giant leap for humanity.  Illustration from Nasa.