The International Space Station. Credit: NASA

Sunday, July 13, 2014

A TYPICAL SUN BURST

FROM:  NASA 




A stream of plasma burst out from the sun, but since it lacked enough force to break away, most of it fell back into the sun (May 27, 2014). The video, seen in a combination of two wavelengths of extreme ultraviolet light, covers a little over two hours. This eruption was minor and such events occur almost every day on the sun and suggest the kind of dynamic activity being driven by powerful magnetic forces near the sun's surface.   Image credit: NASA/Solar Dynamics Observatory.

Sunday, July 6, 2014

A LOOK INTO DESTINY


FROM:  NASA 

This view in the International Space Station, photographed by an Expedition 40 crew member, shows how it looks inside the space station while the crew is asleep. The dots near the hatch point to a Soyuz spacecraft docked to the station in case the crew was to encounter an emergency. This view is looking into the Destiny Laboratory from Node 1 (Unity) with Node 2 (Harmony) in the background. Destiny is the primary research laboratory for U.S. payloads, supporting a wide range of experiments and studies. Image Credit: NASA.

Sunday, June 29, 2014

A LOOK AT GALAXY NGC 4485

FROM:  NASA




This image from NASA/ESA's Hubble Space Telescope shows galaxy NGC 4485 in the constellation of Canes Venatici (The Hunting Dogs). The galaxy is irregular in shape, but it hasn’t always been so. Part of NGC 4485 has been dragged towards a second galaxy, named NGC 4490 — which lies out of frame to the bottom right of this image. Between them, these two galaxies make up a galaxy pair called Arp 269. Their interactions have warped them both, turning them from spiral galaxies into irregular ones. NGC 4485 is the smaller galaxy in this pair, which provides a fantastic real-world example for astronomers to compare to their computer models of galactic collisions. The most intense interaction between these two galaxies is all but over; they have made their closest approach and are now separating. The trail of bright stars and knotty orange clumps that we see here extending out from NGC 4485 is all that connects them — a trail that spans some 24 000 light-years. Many of the stars in this connecting trail could never have existed without the galaxies’ fleeting romance. When galaxies interact hydrogen gas is shared between them, triggering intense bursts of star formation. The orange knots of light in this image are examples of such regions, clouded with gas and dust. European Space Agency Credit: ESA/Hubble & NASA, Acknowledgement: Kathy van Pelt.